Atherosclerosis is a chronic inflammatory arterial disease characterized by build-up of atheromatous plaque, which narrows the lumen of arteries. Hypercholesterolemia and excessive oxidative stress in arterial walls are among the main causative factors of atherosclerosis. Transient receptor potential channel M2 (TRPM2) is a Ca2+-permeable cation channel activated by oxidative stress. However, the role of TRPM2 in atherosclerosis in animal models is not well studied. In the present study, with the use of adeno-associated virus (AAV)-PCSK9 and TRPM2 knockout (TRPM2−/−) mice, we determined the role of TRPM2 in hypercholesterolemia-induced atherosclerosis. Our results demonstrated that TRPM2 knockout reduced atherosclerotic plaque area in analysis of En face Oil Red O staining of both whole aortas and aortic-root thin sections. Furthermore, TRPM2 knockout reduced the expression of CD68, α-SMA, and PCNA in the plaque region, suggesting a role of TRPM2 in promoting macrophage infiltration and smooth-muscle cell migration into the lesion area. Moreover, TRPM2 knockout reduced the expression of ICAM-1, MCP-1, and TNFα and decreased the ROS level in the plaque region, suggesting a role of TRPM2 in enhancing monocyte adhesion and promoting vascular inflammation. In bone-marrow-derived macrophages and primary cultured arterial endothelial cells, TRPM2 knockout reduced the production of inflammatory cytokines/factors and decreased ROS production. In addition, a TRPM2 antagonist N-(p-amylcinnamoyl) anthranilic acid (ACA) was able to inhibit atherosclerotic development in an ApoE−/− mouse model of atherosclerosis. Taken together, the findings of our study demonstrated that TRPM2 contributes to the progression of hypercholesterolemia-induced atherosclerosis. Mechanistically, TRPM2 channels may provide an essential link that can connect ROS to Ca2+ and inflammation, consequently promoting atherosclerotic progression.
Atherosclerosis is one of the leading causes of cardiovascular diseases and mortality around the world. One exciting strategy for atherosclerosis treatment is immunotherapy, especially active immunization. Active immunization relies on the delivery of antigens in a vaccine platform to introduce humoral and cellular immunity alleviating atherosclerotic progression. TRPM2 is an ROS-activated Ca2+-permeable ion channel that can promote atherosclerosis via stimulating vascular inflammation. In the present study, we developed a strategy of active immunization with TRPM2 E3 domain peptide in a vaccine platform, aiming to induce endogenous production of anti-TRPM2 blocking antibody in mice in vivo, consequently inhibiting TRPM2 channel activity to alleviate atherosclerotic progression. The results show that immunization with a pig TRPM2 E3 region-based peptide (P1) could effectively alleviate high cholesterol diet-induced atherosclerosis in ApoE-/- mice. We worked out the best vaccine formulation for most effective atheroprotection, namely P1 at the dose of 67.5 µg per mouse (2.5 mg/kg body weight) with aluminium salts as adjuvant. The present study laid the foundation for future clinical trials using TRPM2 E3 vaccine for potential therapeutic option against atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.