Delay-tolerant networks (DTNs) are wireless mobile networks, which suffer from frequent disruption, high latency, and lack of a complete path from source to destination. The intermittent connectivity in DTNs makes it difficult to efficiently deliver messages. Research results have shown that the routing protocol based on reinforcement learning can achieve a reasonable balance between routing performance and cost. However, due to the complexity, dynamics, and uncertainty of the characteristics of nodes in DTNs, providing a reliable multihop routing in DTNs is still a particular challenge. In this paper, we propose a Fuzzy-logic-based Double
Q
-Learning Routing (FDQLR) protocol that can learn the optimal route by combining fuzzy logic with the Double
Q
-Learning algorithm. In this protocol, a fuzzy dynamic reward mechanism is proposed, and it uses fuzzy logic to comprehensively evaluate the characteristics of nodes including node activity, contact interval, and movement speed. Furthermore, a hot zone drop mechanism and a drop mechanism are proposed, which can improve the efficiency of message forwarding and buffer management of the node. The simulation results show that the fuzzy logic can improve the performance of the FDQLR protocol in terms of delivery ratio, delivery delay, and overhead. In particular, compared with other related routing protocols of DTNs, the FDQLR protocol can achieve the highest delivery ratio and the lowest overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.