We report the detailed transcriptomic profiles of human innate myeloid cells using RNA sequencing. Monocytes migrate from blood into infected or wounded tissue to differentiate into macrophages, and control inflammation via phagocytosis or cytokine secretion. We differentiated culture primary monocytes with either GM- or M-CSF to obtain pro- or anti-inflammatory macrophages, and respectively activated them with either LPS/IFNγ or anti-inflammatory cytokines. We also treated the THP-1 monocytic cell line with PMA and similar cytokines to mimic differentiation and activation. We detected thousands of expression and alternative-splicing changes during monocyte-to-macrophage differentiation and activation, and a net increase in exon inclusion. MBNL1 knockdown phenocopies several alternative-splicing changes and strongly impairs PMA differentiation, suggesting functional defects in monocytes from Myotonic Dystrophy patients. This study provides general insights into alternative splicing in the monocyte–macrophage lineage, whose future characterization will elucidate their contribution to immune functions, which are altered in immunodeficiencies, autoimmunity, atherosclerosis and cancer.
Great progress has been made in genetic dissection of quantitative trait variation during the past two decades, but many studies still reveal only a small fraction of quantitative trait loci (QTLs), and epistasis remains elusive. We integrate contemporary knowledge of signal transduction pathways with principles of quantitative and population genetics to characterize genetic networks underlying complex traits, using a model founded upon one-way functional dependency of downstream genes on upstream regulators (the principle of hierarchy) and mutual functional dependency among related genes (functional genetic units, FGU). Both simulated and real data suggest that complementary epistasis contributes greatly to quantitative trait variation, and obscures the phenotypic effects of many ‘downstream’ loci in pathways. The mathematical relationships between the main effects and epistatic effects of genes acting at different levels of signaling pathways were established using the quantitative and population genetic parameters. Both loss of function and “co-adapted” gene complexes formed by multiple alleles with differentiated functions (effects) are predicted to be frequent types of allelic diversity at loci that contribute to the genetic variation of complex traits in populations. Downstream FGUs appear to be more vulnerable to loss of function than their upstream regulators, but this vulnerability is apparently compensated by different FGUs of similar functions. Other predictions from the model may account for puzzling results regarding responses to selection, genotype by environment interaction, and the genetic basis of heterosis.
Therapeutic strategies against KRAS mutant colorectal cancers are developed using cell line models, which do not accurately represent the transcriptome driven by oncogenic KRAS in tumors. We sought to identify a KRAS-associated gene signature from colorectal tumors to develop a precise treatment strategy. Integrative analysis of quantitative KRAS mutation detection and matched gene expression profiling in 55 CRC bulk tumors was carried out to define a gene signature enriched in CRC tumors with high KRAS mutation. The KRAS-associated gene signature identified exhibits functional enrichment in cell cycle and mitosis processes, and includes mitotic transcription factor, FOXM1. Combination treatment of CDK4/6 inhibitor Palbociclib and MEK inhibitor PD0325901 was tested in KRAS-mutant, BRAF-mutant CRC, normal colon epithelial lines and xenografts models to determine their efficacy and toxicity and to monitor the changes in the gene signature. Inhibiting CDK4/6, an upstream regulator of FOXM1, and MEK synergistically depleted FOXM1 and KRAS-associated gene signature, suggesting that CDK4/6 and MEK regulate the KRAS gene signature. The combined inhibition of CDK4/6 and MEK elicited a robust therapeutic response in KRAS-dependent and BRAF-mutant CRC, both in vitro and in vivo and this correlated with downregulation of the KRAS-associated gene signature. Our preclinical study demonstrated the efficacy of Palbociclib and PD0325901 combinatorial treatment selectively in KRAS-dependent and BRAF-mutant CRC but not in normal colon epithelial cells. The KRAS-associated gene signature could facilitate the identification of responsive metastatic CRC to this therapeutic strategy in clinical settings.
Objective:Radiomics pipelines have been developed to extract novel information from radiological images, which may help in phenotypic profiling of tumours that would correlate to prognosis. Here, we compared two publicly available pipelines for radiomics analyses on head and neck CT and MRI in nasopharynx cancer (NPC).Methods and materials:100 biopsy-proven NPC cases stratified by T- and N-categories were enrolled in this study. Two radiomics pipeline, Moddicom (v. 0.51) and Pyradiomics (v. 2.1.2) were used to extract radiomics features of CT and MRI. Segmentation of primary gross tumour volume was performed using Velocity v. 4.0 by consensus agreement between three radiation oncologists. Intraclass correlation between common features of the two pipelines was analysed by Spearman’s rank correlation. Unsupervised hierarchical clustering was used to determine association between radiomics features and clinical parameters.Results:We observed a high proportion of correlated features in the CT data set, but not for MRI; 76.1% (51 of 67 common between Moddicom and Pyradiomics) of CT features and 28.6% (20 of 70 common) of MRI features were significantly correlated. Of these, 100% were shape-related for both CT and MRI, 100 and 23.5% were first-order-related, 61.9 and 19.0% were texture-related, respectively. This interpipeline heterogeneity affected the downstream clustering with known prognostic clinical parameters of cTN-status and GTVp. Nonetheless, shape features were the most reproducible predictors of clinical parameters among the different radiomics modules.Conclusion:Here, we highlighted significant heterogeneity between two publicly available radiomics pipelines that could affect the downstream association with prognostic clinical factors in NPCAdvances in knowledge:The present study emphasized the broader importance of selecting stable radiomics features for disease phenotyping, and it is necessary prior to any investigation of multicentre imaging datasets to validate the stability of CT-related radiomics features for clinical prognostication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.