Biodegradable polymers play a pivotal role in in situ tissue engineering. Utilizing various technologies, researchers have been able to fabricate 3D tissue engineering scaffolds using biodegradable polymers. They serve as temporary templates, providing physical and biochemical signals to the cells and determining the successful outcome of tissue remodeling. Furthermore, a biodegradable scaffold also presents the fourth dimension for tissue engineering, namely time. The properties of the biodegradable polymer change over time, presenting continuously changing features during the degradation process. These changes become more complicated when different materials are combined together to fabricate a composite or heterogeneous scaffold. This review undertakes a systematic analysis of the basic characteristics of biodegradable polymers and describe recent advances in making composite biodegradable scaffolds for in situ tissue engineering and regenerative medicine. The interaction between implanted biodegradable biomaterials and the in vivo environment are also discussed, including the properties and functional changes of the degradable scaffold, the local effect of degradation on the contiguous tissue and their evaluation using both in vitro and in vivo models.
At the present time, there is no successful synthetic, off-the-shelf small-caliber vascular graft (<6 mm) for the repair or bypass of the coronary or carotid arteries. This stimulates ongoing investigations to fabricate an artificial vascular graft that has both sufficient mechanical properties as well as superior biological performance. Collagen has long been considered as a viable material to encourage cell recruitment, tissue regeneration, and revascularization, but its use has been limited by its inferior mechanical properties. In this study, novel electrochemically aligned collagen filaments were used to engineer a bilayer small-caliber vascular graft, by circular knitting the collagen filaments and electrospinning collagen nanofibers. The collagen prototype grafts showed significantly greater bursting strength under dry and hydrated conditions to that of autografts such as the human internal mammary artery and the saphenous vein (SV). The suture retention strength was sufficient under dry condition, but that under hydrated condition needs to be further improved. The radial dynamic compliance of the collagen grafts was similar to that of the human SV. During in vitro cell culture assays with human umbilical vein endothelial cells, the prototype collagen grafts also encouraged cell adhesion and promoted cell proliferation compared to the synthetic poly(lactic acid) grafts. In conclusion, this study demonstrated the feasibility of the use of novel collagen filaments for fabricating small caliber tissue-engineered vascular grafts that provide both sufficient mechanical properties and superior biological performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.