Although the maximum collector-emitter voltage of a high-voltage insulated-gate bipolar transistor (HV-IGBT) reaches 3300 V or higher, it still cannot satisfy the requirements of some high-voltage high-power converters. Applying power semiconductor devices in series connection can effectively improve the voltage rating and power rating of a power electronic converter.The key issue of device series connection is voltage balancing in static switching state and dynamic switching state. In this paper, a three-level converter based on series-connected HV-IGBTs is presented, its voltage-balancing subcircuits are analyzed, and the parameter design method for the converter is proposed. During the design process, key performance indexes of the series connection circuit, such as the voltage-balancing effect, loss of the voltage-balancing circuit, switching loss, and switching time, are comprehensively considered. Moreover, component parameters of the three-level converter are calculated considering the influence of the voltage-balancing circuit. The proposed parameter design method is applied in the development of a three-level HV-IGBT (4500 V/600 A) series connection test platform with 10 000-V rated dc-link voltage. Experimental results verify the validity of the proposed method.Index Terms-High-voltage insulated-gate bipolar transistor (HV-IGBT), parameter design, series connection, three level, voltage balancing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.