Abstract:Image fusion is widely used in different areas and can integrate complementary and relevant information of source images captured by multiple sensors into a unitary synthetic image. Medical image fusion, as an important image fusion application, can extract the details of multiple images from different imaging modalities and combine them into an image that contains complete and non-redundant information for increasing the accuracy of medical diagnosis and assessment. The quality of the fused image directly affects medical diagnosis and assessment. However, existing solutions have some drawbacks in contrast, sharpness, brightness, blur and details. This paper proposes an integrated dictionary-learning and entropy-based medical image-fusion framework that consists of three steps. First, the input image information is decomposed into low-frequency and high-frequency components by using a Gaussian filter. Second, low-frequency components are fused by weighted average algorithm and high-frequency components are fused by the dictionary-learning based algorithm. In the dictionary-learning process of high-frequency components, an entropy-based algorithm is used for informative blocks selection. Third, the fused low-frequency and high-frequency components are combined to obtain the final fusion results. The results and analyses of comparative experiments demonstrate that the proposed medical image fusion framework has better performance than existing solutions.
Sparse representation has been widely applied to multi-focus image fusion in recent years. As a key step, the construction of an informative dictionary directly decides the performance of sparsity-based image fusion. To obtain sufficient bases for dictionary learning, different geometric information of source images is extracted and analysed. The classified image bases are used to build corresponding subdictionaries by principle component analysis. All built subdictionaries are merged into one informative dictionary. Based on constructed dictionary, compressive sampling matched pursuit algorithm is used to extract corresponding sparse coefficients for the representation of source images. The obtained sparse coefficients are fused by Max-L1 fusion rule first, and then inverted to form the final fused image. Multiple comparative experiments demonstrate that the proposed method is competitive with other the state-of-the-art fusion methods.
With the increase in the complexity and informatization of power grids, new challenges, such as access to a large number of distributed energy sources and cyber attacks on power grid control systems, are brought to load-frequency control. As load-frequency control methods, both aggregated distributed energy sources (ADES) and artificial intelligence techniques provide flexible solution strategies to mitigate the frequency deviation of power grids. This paper proposes a load-frequency control strategy of ADES-based reinforcement learning under the consideration of reducing the impact of denial of service (DoS) attacks. Reinforcement learning is used to evaluate the pros and cons of the proposed frequency control strategy. The entire evaluation process is realized by the approximation of convex neural networks. Convex neural networks are used to convert the nonlinear optimization problems of reinforcement learning for long-term performance into the corresponding convex optimization problems. Thus, the local optimum is avoided, the optimization process of the strategy utility function is accelerated, and the response ability of controllers is improved. The stability of power grids and the convergence of convex neural networks under the proposed frequency control strategy are studied by constructing Lyapunov functions to obtain the sufficient conditions for the steady states of ADES and the weight convergence of actor–critic networks. The article uses the IEEE14, IEEE57, and IEEE118 bus testing systems to verify the proposed strategy. Our experimental results confirm that the proposed frequency control strategy can effectively reduce the frequency deviation of power grids under DoS attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.