Driven by the big data science, material informatics has attracted enormous research interests recently along with many recognized achievements. To acquire knowledge of materials by previous experience, both feature descriptors and databases are essential for training machine learning (ML) models with high accuracy. In this regard, the electronic charge density ρ(r), which in principle determines the properties of materials at their ground state, can be considered as one of the most appropriate descriptors. However, the systematic electronic charge density ρ(r) database of inorganic materials is still in its infancy due to the difficulties in collecting raw data in experiment and the expensive first-principles based computational cost in theory. Herein, a real space electronic charge density ρ(r) database of 17,418 cubic inorganic materials is constructed by performing high-throughput density functional theory calculations. The displayed ρ(r) patterns show good agreements with those reported in previous studies, which validates our computations. Further statistical analysis reveals that it possesses abundant and diverse data, which could accelerate ρ(r) related machine learning studies. Moreover, the electronic charge density database will also assists chemical bonding identifications and promotes new crystal discovery in experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.