In angiosperms, the key step in sexual reproduction is successful acquisition of meiotic fate. However, the molecular mechanism determining meiotic fate remains largely unknown. Here, we report that OsSPOROCYTELESS (OsSPL) is critical for meiotic entry in rice (Oryza sativa). We performed a large-scale genetic screen of rice sterile mutants aimed to identify genes regulating meiotic entry and identified OsSPL using map-based cloning. We showed that meiosis-specific callose deposition, chromatin organization, and centromere-specific histone H3 loading were altered in the cells corresponding to pollen mother cells in Osspl anthers. Global transcriptome analysis showed that the enriched differentially expressed genes in Osspl were mainly related to redox status, meiotic process, and parietal cell development. OsSPL might form homodimers and interact with TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factor OsTCP5 via the SPL dimerization and TCP interaction domain. OsSPL also interacts with TPL (TOPLESS) corepressors, OsTPL2 and OsTPL3, via the EAR motif. Our results suggest that the OsSPL-mediated signaling pathway plays a crucial role in rice meiotic entry, which appears to be a conserved regulatory mechanism for meiotic fate acquisition in angiosperms.
Telomere bouquet formation, a highly conserved meiotic event, plays an important role in homologous pairing and therefore progression of meiosis; however, the underlying molecular mechanism remains largely unknown. Here, we identified ZYGOTENE1 (ZYGO1), a novel F-box protein in rice (Oryza sativa), and verified its essential role in bouquet formation during early meiosis. In zygo1 mutants, zygotene chromosome aggregation and telomere clustering failed to occur. The suppressed telomere clustering in homologous pairing aberration in rice meiosis1 (pair1) zygo1 and rice completion of meiotic recombination (Oscom1) zygo1 double mutants, together with the altered localization of OsSAD1 (a SUN protein associated with the nuclear envelope) in zygo1, showed that ZYGO1 has a significant function in bouquet formation. In addition, the interaction between ZYGO1 and rice SKP1-like protein 1 suggested that ZYGO1 might modulate bouquet formation as a component of the SKP1-Cullin1-F-box complex. Although double-strand break formation and early recombination element installation occurred normally, zygo1 mutants showed defects in full-length pairing and synaptonemal complex assembly. Furthermore, crossover (CO) formation was disturbed, and foci of Human enhancer of invasion 10 were restricted to the partially synapsed chromosome regions, indicating that CO reduction might be caused by the failure of full-length chromosome alignment in zygo1. Therefore, we propose that ZYGO1 mediates bouquet formation to efficiently promote homolog pairing, synapsis, and CO formation in rice meiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.