In more recent years, long non-coding RNAs (lncRNAs) have been investigated as a new class of regulators of cellular processes, such as cell growth, apoptosis, and carcinogenesis. Although lncRNAs are dysregulated in numerous cancer types, limited data are available on the expression profile and functional role of lncRNAs in non-small cell lung cancer (NSCLC). In the present study, we determined the expression pattern of the growth arrest-specific transcript 5 (GAS5) in 72 NSCLC specimens by qRT-PCR and assess its biological functions in the development and progression of NSCLC. The results revealed that GAS5 expression was down-regulated in cancerous tissues compared to adjacent noncancerous tissues (P < 0.05) and was highly related to tumor size and TNM stage (P < 0.05). This correlation between GAS5 and clinicopathological parameters indicates that GAS5 might function as a tumor suppressor. Furthermore, GAS5 overexpression increased tumor cell growth arrest and induced apoptosis in vitro and in vivo. Meanwhile, siRNA-mediated knockdown of GAS5 promoted tumor cell growth. Importantly, through western blot analysis, we found that ectopic expression of GAS5 significantly up-regulated p53 expression and down-regulated transcription factor E2F1 expression. Taken together, these findings suggest that GAS5 is a tumor suppressor in NSCLC, and the action of GAS5 is mediated by p53-dependent and p53-independent pathways. GAS5 could serve as a potential diagnostic marker for NSCLC and may be a novel therapeutic target in patients with NSCLC.
BackgroundConventional prenatal screening tests, such as maternal serum tests and ultrasound scan, have limited resolution and accuracy.MethodsWe developed an advanced noninvasive prenatal diagnosis method based on massively parallel sequencing. The Noninvasive Fetal Trisomy (NIFTY) test, combines an optimized Student’s t-test with a locally weighted polynomial regression and binary hypotheses. We applied the NIFTY test to 903 pregnancies and compared the diagnostic results with those of full karyotyping.Results16 of 16 trisomy 21, 12 of 12 trisomy 18, two of two trisomy 13, three of four 45, X, one of one XYY and two of two XXY abnormalities were correctly identified. But one false positive case of trisomy 18 and one false negative case of 45, X were observed. The test performed with 100% sensitivity and 99.9% specificity for autosomal aneuploidies and 85.7% sensitivity and 99.9% specificity for sex chromosomal aneuploidies. Compared with three previously reported z-score approaches with/without GC-bias removal and with internal control, the NIFTY test was more accurate and robust for the detection of both autosomal and sex chromosomal aneuploidies in fetuses.ConclusionOur study demonstrates a powerful and reliable methodology for noninvasive prenatal diagnosis.
Arginine is an important medium for the transport and storage of nitrogen, and arginase (also known as arginine amidohydrolase, ARGAH) is responsible for catalyse of arginine into ornithine and urea in plants. In this study, the impact of AtARGAHs on abiotic stress response was investigated by manipulating AtARGAHs expression. In the knockout mutants of AtARGAHs, enhanced tolerances were observed to multiple abiotic stresses including water deficit, salt, and freezing stresses, while AtARGAH1- and AtARGAH2-overexpressing lines exhibited reduced abiotic stress tolerances compared to the wild type. Consistently, the enhanced tolerances were confirmed by the changes of physiological parameters including electrolyte leakage, water loss rate, stomatal aperture, and survival rate. Interestingly, the direct downstream products of arginine catabolism including polyamines and nitric oxide (NO) concentrations significantly increased in the AtARGAHs-knockout lines, but decreased in overexpressing lines under control conditions. Additionally, the AtARGAHs-overexpressing and -knockout lines displayed significantly reduced relative arginine (% of total free amino acids) relative to the wild type. Similarly, reactive oxygen species accumulation was remarkably regulated by AtARGAHs under abiotic stress conditions, as shown from hydrogen peroxide (H2O2), superoxide radical () concentrations, and antioxidant enzyme activities. Taken together, this is the first report, as far as is known, to provide evidence that AtARGAHs negatively regulate many abiotic stress tolerances, at least partially, attribute to their roles in modulating arginine metabolism and reactive oxygen species accumulation. Biotechnological strategy based on manipulation of AtARGAHs expression will be valuable for future crop breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.