Nowadays, colorectal cancer is the fourth most common type of tumor all over the world. When diagnosed, ∼50%-60% of tumors have metastasized, thus resulting in a grim prognosis. Chemotherapy is regarded as standard treatment for patients with colorectal cancer, however, limitations of chemotherapy cannot be ignored, such as low selectivity, insufficient concentrations in tumor tissues, and systemic toxicity. Recently, six targeted drugs have been approved by the U.S. Food and Drug Administration (FDA) for treatment of metastatic colorectal cancer (mCRC), including bevacizumab, aflibercept, regorafenib, cetuximab, and panitumumab. The development of these drugs marked significant advancement in the field of mCRC therapy. The addition of biologic agents to chemotherapy has prolonged the median overall survival. Now, many investigational drugs are under clinical trials, of which programmed death (PD)-1/L1 has drawn much attention. In this review, new biologic agents under clinical trials such as MEK/MET/RAS/RAF/PD-1 inhibitors with potentials for mCRC treatment are concluded by describing targeted drugs approved by FDA, to offer new insights into global trends and future development.
Phenylethanoid glycosides are a group of phenolic compounds with diverse biological activities such as hypotensive, diuretic, and hypoglycemic effects. In this study, a target profiling analysis approach using ultra-performance liquid chromatography coupled with tandem quadrupole mass spectrometry (MS) was established on the basis of parent ion scanning for m/z 161, the characteristic product ion for phenylethanoid glycosides. It was successfully employed to discriminate the chemical composition of phenylethanoid glycosides between Plantaginis Herba and Plantaginis Semen, two medicinal parts of Plantago plants, which are widely used as herbal medicine in China. Totally, 34 phenylethanoid glycosides were characterized and tentatively identified by their retention times, MS, and tandem quadrupole MS (MS/MS) data. Combined with chemometrics analysis of principal component analysis and orthogonal projection to latent structural discriminate analysis, eight of them, especially acteoside and plantamajoside, were picked out and contributed to the chemical distinction between Plantaginis Herba and Plantaginis Semen, which might be responsible for the differences in diuretic and hypotensive effects between the two medicinal parts. This new approach for target profiling provides not only a novel idea for specific analysis of active chemical constituents in the same type, but also a promising and reference method for quality evaluation of traditional Chinese medicines.
Ethanolic extract of the seeds of Plantago asiatica L. showed significant inhibitory activity of angiotensin-converting enzyme (ACE) determined by monitoring the transformation from a substrate hippuryl-histidyl-leucine (HHL) to the product hippuric acid (HA) in vitro using an UPLC-MS method. The bioguided fractionation of the extract resulted in the isolation of four ACE inhibitory active phenylpropanoid glycosides acteoside, isoacteoside, plantainoside D, and plantamajoside with IC(50) values of 2.69 mM, 2.46 mM, 2.17 mM, and 2.47 mM, respectively. Their structures were elucidated through the analysis of NMR, UV, IR and MS data. Our study is the first demonstration that Plantago asiatica L. and its major constituents have ACE inhibitory activity in vitro. It is assumed that the identified compounds contribute to the angiotensin-converting enzyme-inhibitory activity of the extract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.