Noninvasive prenatal testing (NIPT) using sequencing of fetal cellfree DNA from maternal plasma has enabled accurate prenatal diagnosis of aneuploidy and become increasingly accepted in clinical practice. We investigated whether NIPT using semiconductor sequencing platform (SSP) could reliably detect subchromosomal deletions/duplications in women carrying high-risk fetuses. We first showed that increasing concentration of abnormal DNA and sequencing depth improved detection. Subsequently, we analyzed plasma from 1,456 pregnant women to develop a method for estimating fetal DNA concentration based on the size distribution of DNA fragments. Finally, we collected plasma from 1,476 pregnant women with fetal structural abnormalities detected on ultrasound who also underwent an invasive diagnostic procedure. We used SSP of maternal plasma DNA to detect subchromosomal abnormalities and validated our results with array comparative genomic hybridization (aCGH). With 3.5 million reads, SSP detected 56 of 78 (71.8%) subchromosomal abnormalities detected by aCGH. With increased sequencing depth up to 10 million reads and restriction of the size of abnormalities to more than 1 Mb, sensitivity improved to 69 of 73 (94.5%). Of 55 false-positive samples, 35 were caused by deletions/ duplications present in maternal DNA, indicating the necessity of a validation test to exclude maternal karyotype abnormalities. This study shows that detection of fetal subchromosomal abnormalities is a viable extension of NIPT based on SSP. Although we focused on the application of cell-free DNA sequencing for NIPT, we believe that this method has broader applications for genetic diagnosis, such as analysis of circulating tumor DNA for detection of cancer.noninvasive prenatal testing | NIPT | maternal plasma DNA | cell-free DNA | semiconductor sequencing G enomic disorders are defined by loss, gain, or translocation of chromosomal material. Deletion/duplication syndromes are known to be associated with a wide range of structural and functional abnormalities (1), such as Cri du Chat Syndrome (5p deletion) (2) and DiGeorge Syndrome (22q11.2 deletion) (3). Such deletion/duplication syndromes can be reliably diagnosed prenatally from the DNA of fetal cells; fetal DNA may be assessed for chromosomal abnormalities by karyotyping, FISH, comparative genomic hybridization (CGH), and array-based technologies (4). G-banded karyotyping is the predominant technique for diagnosis of chromosomal abnormalities, but it is limited to resolution of 5-10 Mb (5, 6). Genomic disorders of a smaller size are more reliably detected by chromosomal microarray analysis (CMA), of which array CGH (aCGH) is an example.According to The American Society of Human Genetics, CMA has replaced the standard metaphase karyotype in postnatal assessment of individuals with developmental delay, intellectual disability, congenital anomalies, and autism (7). In December of 2013, The American Congress of Obstetricians and Gynecologists and the Society of Maternal Fetal-Medicine recommended pr...
Many studies have implicated both angiotensin II (ANG II) and aldosterone (Aldo) in the pathogenesis of hypertension, the progression of renal injury, and cardiac remodeling after myocardial infarction. In several cases, ANG II and Aldo have been shown to have synergistic interactions in the periphery. In the present studies, we tested the hypothesis that ANG II and Aldo interact centrally in Aldo- and ANG II-induced hypertension in male rats. In rats with blood pressure (BP) and heart rate (HR) measured by DSI telemetry, intracerebroventricular (icv) infusions of the mineralocorticoid receptor (MR) antagonists spironolactone and RU28318 or the angiotensin type 1 receptor (AT1R) antagonist irbesartan significantly inhibited Aldo-induced hypertension. In ANG II-induced hypertension, icv infusion of RU28318 significantly reduced the increase in BP. Moreover, icv infusions of the reactive oxygen species (ROS) scavenger tempol or the NADPH oxidase inhibitor apocynin attenuated Aldo-induced hypertension. To confirm these effects of pharmacological antagonists, icv injections of either recombinant adeno-associated virus carrying siRNA silencers of AT1aR (AT1aR-siRNA) or MR (MR-siRNA) significantly attenuated the development of Aldo-induced hypertension. The immunohistochemical and Western blot analyses of AT1aR-siRNA- or MR-siRNA-injected rats showed a marked reduction in the expression of AT1R or MR in the paraventricular nucleus compared with scrambled siRNA rats. When animals from all studies underwent ganglionic blockade with hexamethonium, there was a smaller reduction in the fall of BP in animals receiving icv AT1R or MR antagonists. These results suggest that ANG II and Aldo interact in the brain in a mutually cooperative manner such that the functional integrity of both brain AT1R and MR are necessary for hypertension to be induced by either systemic ANG II or Aldo. The pressor effects produced by systemic ANG II or Aldo involve increased central ROS and sympathetic outflow.
Therapeutic antibodies targeting PD-1 have made major breakthroughs in cancer treatment. However, the majority of colorectal cancer (CRC) cases are microsatellite stable (MSS) and do not respond to anti-PD-1-based immunotherapy. Combination therapy will be an ideal strategy to overcome this limitation. Gegen Qinlian decoction (GQD), a classical traditional Chinese medicine (TCM) formula, has been clinically proven to be effective in the treatment of ulcerative colitis (UC) and type 2 diabetes mellitus. Here, a systemic pharmacological study revealed that GQD acts through multiple targets and pathways in the human body. Combination therapy with GQD and anti-mouse PD-1 potently inhibited the growth of CT26 tumours in a xenograft model. Gut microbiota analysis revealed that combination therapy with GQD and anti-mouse PD-1 significantly enriched for s__Bacteroides_acidifaciens and s__uncultured_organism_g__norank_f__Bacteroidales_S24-7_group . Based on metabolomic analyses, profoundly altered metabolites were identified in the combination therapy group. Two metabolic signalling pathways, namely, glycerophospholipid metabolism and sphingolipid metabolism, were explored. In particular, we found that combination therapy with GQD and anti-mouse PD-1 significantly increased the proportion of CD8+ T cells in peripheral blood and tumour tissues. Direct treatment with GQD and anti-mouse PD-1 increased the expression of IFN-γ, which is a critical factor in antitumour immunotherapy. In addition, combination therapy with GQD and anti-mouse PD-1 downregulated PD-1 and increased IL-2 levels, suggesting that the combination therapy could effectively restore T-cell functions by suppressing inhibitory checkpoints. The application of the Chinese medicinal formula GQD with PD-1 blockade-based immunotherapy can be a novel therapeutic strategy for CRC patients with MSS tumours.
Changes in gut microbiome leaded to changes in glycerophospholipid metabolism level, which may affect the expression of immune-related cytokines IFN-γ and IL-2 in the tumor microenvironment, resulting in a different therapeutic effect of PD-1 antibody. Our findings show that changes in the gut microbiome affect the glycerophospholipid metabolic pathway, thereby regulating the therapeutic potential of PD-1 antibody in the immunotherapy of MSS-type CRC tumor-bearing mice.
Adzuki bean (Vigna angularis), an important legume crop, is grown in more than 30 countries of the world. The seed of adzuki bean, as an important source of starch, digestible protein, mineral elements, and vitamins, is widely used foods for at least a billion people. Here, we generated a high-quality draft genome sequence of adzuki bean by whole-genome shotgun sequencing. The assembled contig sequences reached to 450 Mb (83% of the genome) with an N50 of 38 kb, and the total scaffold sequences were 466.7 Mb with an N50 of 1.29 Mb. Of them, 372.9 Mb of scaffold sequences were assigned to the 11 chromosomes of adzuki bean by using a single nucleotide polymorphism genetic map. A total of 34,183 protein-coding genes were predicted. Functional analysis revealed that significant differences in starch and fat content between adzuki bean and soybean were likely due to transcriptional abundance, rather than copy number variations, of the genes related to starch and oil synthesis. We detected strong selection signals in domestication by the population analysis of 50 accessions including 11 wild, 11 semiwild, 17 landraces, and 11 improved varieties. In addition, the semiwild accessions were illuminated to have a closer relationship to the cultigen accessions than the wild type, suggesting that the semiwild adzuki bean might be a preliminary landrace and play some roles in the adzuki bean domestication. The genome sequence of adzuki bean will facilitate the identification of agronomically important genes and accelerate the improvement of adzuki bean.adzuki bean | genome sequence | starch synthesis genes | fat synthesis genes | domestication
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.