Fragile X-associated Tremor Ataxia Syndrome (FXTAS) results from a CGG repeat expansion in the 5’UTR of FMR1. This repeat is thought to elicit toxicity as RNA yet disease brains contain ubiquitin-positive neuronal inclusions, a pathologic hallmark of protein-mediated neurodegeneration. We explain this paradox by demonstrating that CGG repeats trigger repeat associated non-AUG initiated (RAN) translation of a cryptic polyglycine-containing protein, FMRpolyG. FMRpolyG accumulates in ubiquitin-positive inclusions in Drosophila, cell culture, mouse disease models and FXTAS patient brains. CGG RAN translation occurs in at least two of three possible reading frames at repeat sizes ranging from normal (25) to pathogenic (90), but inclusion formation only occurs with expanded repeats. In Drosophila, CGG repeat toxicity is suppressed by eliminating RAN translation and enhanced by increased polyglycine protein production. These studies expand the growing list of nucleotide repeat disorders where RAN translation occurs and provide evidence that RAN translation contributes to neurodegeneration.
SummaryFragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a limited expansion of CGG repeats in the 5′ UTR of FMR1. Two mechanisms are proposed to cause FXTAS: RNA gain-of-function, where CGG RNA sequesters specific proteins, and translation of CGG repeats into a polyglycine-containing protein, FMRpolyG. Here we developed transgenic mice expressing CGG repeat RNA with or without FMRpolyG. Expression of FMRpolyG is pathogenic, while the sole expression of CGG RNA is not. FMRpolyG interacts with the nuclear lamina protein LAP2β and disorganizes the nuclear lamina architecture in neurons differentiated from FXTAS iPS cells. Finally, expression of LAP2β rescues neuronal death induced by FMRpolyG. Overall, these results suggest that translation of expanded CGG repeats into FMRpolyG alters nuclear lamina architecture and drives pathogenesis in FXTAS.
SUMMARY Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disorder caused by the expansion of 55–200 CGG repeats in the 5′ UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of micro-RNAs (miRNAs) is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery.
The tripartite DENN module, comprised of a N-terminal longin domain, followed by DENN, and d-DENN domains, is a GDP-GTP exchange factor (GEFs) for Rab GTPases, which are regulators of practically all membrane trafficking events in eukaryotes. Using sequence and structure analysis we identify multiple novel homologs of the DENN module, many of which can be traced back to the ancestral eukaryote. These findings provide unexpected leads regarding key cellular processes such as autophagy, vesicle-vacuole interactions, chromosome segregation, and human disease. Of these, SMCR8, the folliculin interacting protein-1 and 2 (FNIP1 and FNIP2), nitrogen permease regulator 2 (NPR2), and NPR3 are proposed to function in recruiting Rab GTPases during different steps of autophagy, fusion of autophagosomes with the vacuole and regulation of cellular metabolism. Another novel DENN protein identified in this study is C9ORF72; expansions of the hexanucleotide GGGGCC in its first intron have been recently implicated in amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD). While this mutation is proposed to cause a RNA-level defect, the identification of C9ORF72 as a potential DENN-type GEF raises the possibility that at least part of the pathology might relate to a specific Rab-dependent vesicular trafficking process, as has been observed in the case of some other neurological conditions with similar phenotypes. We present evidence that the longin domain, such as those found in the DENN module, are likely to have been ultimately derived from the related domains found in prokaryotic GTPase-activating proteins of MglA-like GTPases. Thus, the origin of the longin domains from this ancient GTPase-interacting domain, concomitant with the radiation of GTPases, especially of the Rab clade, played an important role in the dynamics of eukaryotic intracellular membrane systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.