Microglial-mediated neuroinflammation has been established as playing a vital role in pathogenesis of neurodegenerative disorders. Thus, rational regulation of microglia functions to inhibit inflammation injury may be a logical and promising approach to neurodegenerative disease therapy. The purposes of the present study were to explore the neuroprotective effects and potential molecular mechanism of Schizandrin A (Sch A), a lignin compound isolated from Schisandra chinesnesis. Our observations showed that Sch A could significantly down-regulate the increased production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-6 induced by lipopolysaccharide (LPS) both in BV-2 cells and primary microglia cells. Moreover, Sch A exerted obvious neuroprotective effects against inflammatory injury in neurons when exposed to microglia-conditioned medium. Investigations of the mechanism showed the anti-inflammatory effect of Sch A involved the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) expression levels and inhibition of the LPS-induced TRAF6-IKKβ-NF-κB pathway. Furthermore, inhibition of Jak2-Stat3 pathway activation and Stat3 nuclear translocation also was observed. In conclusion, SchA can exert anti-inflammatory and neuroprotective effects by alleviating microglia-mediated neuroinflammation injury through inhibiting the TRAF6-IKKβ-NF-κB and Jak2-Stat3 signaling pathways.
MC13 is a novel coumarin compound found in Murraya, an economic crop whose leaves are widely used as condiment (curry) in cuisine. The aims of the present study were to investigate the neuroprotective effects of MC13 on microglia-mediated inflammatory injury model as well as potential molecular mechanism. Cell viability and apoptosis assay demonstrated that MC13 was not toxic to neurons and significantly protected neurons from microglia-mediated inflammatory injury upon lipopolysaccharide (LPS) stimulation. Results showed that MC13 markedly inhibited LPS-induced production of various inflammatory mediators, including nitrite oxide (Griess method), TNF-α and IL-6 (ELISA assay) in a concentration-dependent manner. Mechanism study showed that MC13 could suppress the activation of NF-κB, which was the central regulator for inflammatory response, and also decreased the interaction of TGF-β-activated kinase 1 (TAK1)-binding protein (TAB2) with TAK1 and TNF receptor associated factor (TRAF6), leading to the decreased phosphorylation levels of NF-κB upstream regulators such as IκB and IκB kinase (IKK). MC13 also significantly down-regulated the phosphorylation levels of ERK and p38 MAPKs, which played key roles in microglia-mediated inflammatory response. Furthermore, MC13 inhibited Jak2-dependent Stat1/3 signaling pathway activation by blocking Jak2 phosphorylation, Stat1/3 phosphorylation, and nuclear translocation. Taken together, our results demonstrated that MC13 protected neurons from microglia-mediated neuroinflammatory injury by inhibiting TRAF6-TAK1-NF-κB, p38/ERK MAPKs, and Jak2-Stat1/3 pathways. Finally, MC13 might interact with LPS and interfere LPS-binding to cell membrane surface. These findings suggested that coumarin might act as a potential medicinal agent for treating neuroinflammation as well as inflammation-related neurodegenerative diseases.
TNF receptor-associated factor 6 (TRAF6) is a key hub protein involved in Toll-like receptor-dependent inflammatory signaling pathway, and it recruits additional proteins to form multiprotein complexes capable of activating downstream NF-κB inflammatory signaling pathway. Ubiquitin-proteasome system (UPS) plays a crucial role in various protein degradations, such as TRAF6, leading to inhibitory effects on inflammatory response and immunologic function. However, whether ubiquitination-dependent TRAF6 degradation can be used as a novel anti-inflammatory drug target still remains to be explored. FMHM, a bioactive natural small molecule compound extracted from Chinese herbal medicine Radix Polygalae, suppressed acute inflammatory response by targeting ubiquitin protein and inducing UPS-dependent TRAF6 degradation mechanism. It was found that FMHM targeted ubiquitin protein via Lys48 site directly induced Lys48 residue-linked polyubiquitination. This promoted Lys48 residue-linked polyubiquitin chain formation on TRAF6, resulting in increased TRAF6 degradation via UPS and inactivation of downstream NF-κB inflammatory pathway. Consequently, FMHM down-regulated inflammatory mediator levels in circulation, protected multiple organs against inflammatory injury in vivo, and prolong the survival of endotoxemia mouse models. Therefore, FMHM can serve as a novel lead compound for the development of TRAF6 scavenging agent via ubiquitination-dependent mode, which represents a promising strategy for treating inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.