Background: Previously we have shown that an elevated baseline neutrophil-to-lymphocyte ratio (NLR) was associated with a high risk of recurrence in patients with differentiated thyroid cancer. The clinical significance of the longitudinal changes in NLR following treatment remained unestablished.Methods: Adults patients with differentiated thyroid cancer were included in the study if the follow-up NLR data at 6 to 18 months after initial treatment were available. The response to treatment was categorized as excellent, indeterminate, biochemical incomplete, and structural incomplete as per guidelines of the American Thyroid Association.Results: Among 151 patients with thyroid cancer, a significant decrease in NLR following treatment was observed in those with stage I disease, those with low risk of recurrence, and those with an excellent response to therapy. Patients with a structural incomplete response had a significant increase in NLR at follow-up (p = 0.012). On multivariate analysis, incomplete response to therapy was associated with male sex (odds ratio [OR] = 3.35), tumor size (OR = 1.63), lymph node metastasis (OR = 4.80), distant metastasis (OR = 12.95), and increased NLR (OR = 13.68).Conclusions: An increase in systemic inflammation following treatment as measured by NLR is independently associated with an incomplete response to therapy in differentiated thyroid cancer.
Abstract.Hyperparathyroidism is characterized by the oversecretion of parathyroid hormone biochemically and increased cell proliferation histologically. Primary and secondary hyperparathyroidism exhibit distinct pathophysiology but share certain common microscopic features. The present study performed the first genome-wide expression analysis directly comparing the expression profile of primary and secondary hyperparathyroidism. Microarray gene expression analyses were performed in parathyroid tissues from 2 primary hyperparathyroidism patients and 3 secondary hyperparathyroidism patients. Unsupervised hierarchical clustering analysis identified two natural subgroups containing different types of hyperparathyroidism. Combined with additional data extracted from a publicly available database, a meta-signature was constructed to represent an intersection of two sets of differential expression profile. Multiple pathways were identified that are aberrantly regulated in hyperparathyroidism. In primary hyperparathyroidism, dysregulated pathways included cell adhesion molecules, peroxisome proliferator-activated receptor signaling pathway, and neuroactive ligand-receptor interaction. Pathways implicated in secondary hyperparathyroidism included tryptophan metabolism, tight junctions, renin-angiotensin system, steroid hormone biosynthesis, and O-glycan biosynthesis. The present study demonstrates that different pathophysiology is associated with differential gene profiling in hyperparathyroidism. Several pathways are involved in parathyroid dysregulation and may be future targets for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.