The insertion of mobile elements into the genome represents a new class of genetic markers for the study of human evolution. Long interspersed elements (LINEs) have amplified to a copy number of about 100,000 over the last 100 million years of mammalian evolution and comprise ∼15% of the human genome. The majority of LINE-1 (L1) elements within the human genome are 5Ј truncated copies of a few active L1 elements that are capable of retrotransposition. Some of the young L1 elements have inserted into the human genome so recently that populations are polymorphic for the presence of an L1 element at a particular chromosomal location. L1 insertion polymorphisms offer several advantages over other types of polymorphisms for human evolution studies. First, they are typed by rapid, simple, polymerase chain reaction (PCR)-based assays. Second, they are stable polymorphisms that rarely undergo deletion. Third, the presence of an L1 element represents identity by descent, because the probability is negligible that two different young L1 repeats would integrate independently between the exact same two nucleotides. Fourth, the ancestral state of L1 insertion polymorphisms is known to be the absence of the L1 element, which can be used to root plots/trees of population relationships. Here we report the development of a PCR-based display for the direct identification of dimorphic L1 elements from the human genome. We have also developed PCR-based assays for the characterization of six polymorphic L1 elements within the human genome. PCR analysis of human/rodent hybrid cell line DNA samples showed that the polymorphic L1 elements were located on several different chromosomes. Phylogenetic analysis of nonhuman primate DNA samples showed that all of the recently integrated "young" L1 elements were restricted to the human genome and absent from the genomes of nonhuman primates. Analysis of a diverse array of human populations showed that the allele frequencies and level of heterozygosity for each of the L1 elements was variable. Polymorphic L1 elements represent a new source of identical-by-descent variation for the study of human evolution.
TART, a telomere-associated DNA element from Drosophila, is shown in this paper to have structural homology to LINE (long interspersed element)-like retrotransposons and to transpose to broken chromosome ends. TART DNA was detected by in situ hybridization in 7 of 10 independent additions of DNA to a chromosome end. We found evidence that a TART element had transposed to the chromosome end in each of two additions that were examined in detail. From the DNA sequence of a TART element that recently transposed, we infer that TART encodes two proteins having significant sequence similarity to the putative proteins of many LINEs. These results support the hypothesis that TART elements preferentially retrotranspose to the termini of chromosomes as part of the essential process by which Drosophila telomeres are maintained.
Drosophila melanogaster telomeres contain arrays of two non-LTR retrotransposons called HeT-A and TART. Previous studies have shown that HeT-A- and TART-like sequences are also located at non-telomeric sites in the Y chromosome heterochromatin. By in situ hybridization experiments, we mapped TART sequences in the h16 region of the long arm close to the centromere of the Y chromosome of D. melanogaster. HeT-A sequences were localized in two different regions on the Y chromosome, one very close to the centromere in the short arm (h18-h19) and the other in the long arm (h13-h14). To assess a possible heterochromatic location of TART and HeT-A elements in other Drosophila species, we performed in situ hybridization experiments, using both TART and HeT-A probes, on mitotic and polytene chromosomes of D. simulans, D. sechellia, D. mauritiana, D. yakuba and D. teissieri. We found that TART and HeT-A probes hybridize at specific heterochromatic regions of the Y chromosome in all Drosophila species that we analyzed.
A total of 445 domestic pigeons were genotyped for the lactate dehydrogenase (LDHA) gene. Crude DNA was isolated from blood samples and feathers. Two polymorphic sites were identified in intron 6: one near the splice donor site GT is called site H and the other near the splice acceptor site is called site B. Interestingly, the nucleotide changes of both these sites associate perfectly with the A and B alleles of HaeIII polymorphism: the A allele with nucleotide A of site H and nucleotide T of site B; while the B allele with nucleotide G of site H and nucleotide G of site B. In this study, we have identified the molecular difference between alleles A and B of the pigeon LDHA gene. The difference at site H in intron 6 explains the HaeIII polymorphism. The frequencies of LDHAAB and LDHABB genotypes between the analysed groups differ significantly (P < 0.001); the LDHAA allele was more frequent in the groups of pigeons with elevated homing performance (P < 0.001). The functional difference may be due to the change at site B, the potential splice branch site. Since LDHA activity is associated with the homing ability, it is possible that during the process of selection for the homing ability, the LDHAA allele has been selected, and is more prevalent in the top-racing groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.