We study an finite-difference time-domain (FDTD) system of uniaxial perfectly matched layer (UPML) method for electromagnetic scattering problems. Particularly we analyze the discrete initial-boundary value problems of the transverse magnetic mode (TM) to Maxwell's equations with Yee's algorithm. An exterior domain in two spacial dimension is truncated by a square with a perfectly matched layer filled by a certain artificial medium. Besides, an artificial boundary condition is imposed on the outer boundary of the UPML. Using energy method, we obtain the stability of this FDTD system on the truncated domain. Numerical experiments are designed to approve the theoretical analysis. Keywords: Maxwell's equations, uniaxial perfectly matched layer, initial-boundary value problem, stability, FDTD MSC(2000): 65M12, 65Z05
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.