Metabolic reprogramming of aerobic glycolysis is a hallmark of cancer cells. Regulators of aerobic glycolysis have become targets for cancer diagnosis and therapy. However, the regulators of aerobic glycolysis in breast cancer development have not been well elucidated. Here, we show that the phosphoglucomutase (PGM) family member PGM5 promotes conversion of glucose-1-phosphate (G1P) into glucose-6-phosphate (G6P) and inhibits breast cancer cell proliferation and migration through regulating aerobic glycolysis. In breast cancer patients, PGM5 is significantly downregulated, and its low expression is a predictor of poor prognosis. MicroRNA-1224-3p (miR-1224-3p) inhibits the PGM5 level through directly targeting its 3’-untranslated region and suppresses PGM5-mediated breast cancer cell proliferation, migration, and glycolytic function. Moreover, the miR-1224-3p/PGM5 axis regulates the expression of cell cycle- and apoptosis-related genes and the markers of epithelial-mesenchymal transition (EMT), a process involved in migration and metastasis of cancer cells. Taken together, our results indicate that miR-1224-3p/PGM5 axis plays important roles in breast cancer cell proliferation, migration, and aerobic glycolysis and may be a potential target for breast cancer therapy.
A further understanding of tumor angiogenesis is urgently needed due to the limited therapeutic efficacy of antiangiogenesis agents. However, the origin of endothelial cells (EC) in tumors remains widely elusive and controversial. Snail has been thoroughly elucidated as a master regulator of the epithelial-mesenchymal transition (EMT), but its role in endothelium generation is not yet established. In this study, we reported a new and unexpected function of Snail in endothelium generation by breast cancer cells. We showed that high Snail-expressing breast cancer cells isolated from patients showed more endothelium generated from these cells. Expression of Snail was positively correlated with endothelial markers in breast cancer patients. The ectopic expression of Snail induced endothelial marker expression, tube formation and DiI-AcLDL uptake of breast cancer cells in vitro, and enhanced tumor growth and microvessel density in vivo. Snail-mediated endothelium generation depended on VEGF and Sox2. Mechanistically, Snail promoted the expression of VEGF and Sox2 through recruiting the p300 activator complex to these promoters. We showed the dual function of Snail in tumor initiation and angiogenesis in vivo and in vitro through activation of Sox2 and VEGF, suggesting Snail may be an ideal target for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.