In order to improve the radiation-resistance ability of the InP based high electron mobility transistor (InP HEMT) by optimizing the epitaxial structure design, a series of InP HEMT epitaxial structure materials with different structure parameters is grown by gas source molecular beam epitaxy. These samples are irradiated at room temperature by a 1.5-MeV electron beam at the same irradiation fluence of 2 × 10<sup>15</sup> cm<sup>–2</sup>. The electrical properties of the two-dimensional electron gas (2DEG) for InP HEMT epitaxial materials before and after irradiation are measured by Hall measurements to obtain the changes of the normalized 2DEG density and electron mobility along with the epitaxial structure parameters. The relation between 2DEG radiation damage and epitaxial structure parameters (such as Si-δ-doping density, spacer thickness, channel thickness and channel In content) of InP HEMT epitaxial structure materials is analyzed. The results show that the 2DEG of the InP HEMT epitaxial structure material with higher Si-δ-doping density, thinner spacer thickness, thicker channel thickness and lower channel In content has lower radiation damage, which possesses the stronger radiation-resistance ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.