The ability of band offsets at multiferroic/metal and multiferroic/electrolyte interfaces in controlling charge transfer and thus altering the photoactivity performance has sparked significant attention in solar energy conversion applications. Here, we demonstrate that the band offsets of the two interfaces play the key role in determining charge transport direction in a downward self-polarized BFO film. Electrons tend to move to BFO/electrolyte interface for water reduction. Our experimental and first-principle calculations reveal that the presence of neodymium (Nd) dopants in BFO enhances the photoelectrochemical performance by reduction of the local electron−hole pair recombination sites and modulation of the band gap to improve the visible light absorption. This opens a promising route to the heterostructure design by modulating the band gap to promote efficient charge transfer.
Observation of visible light trapping in zinc oxide (ZnO) nanorods (NRs) correlated to the optical and photoelectrochemical properties is reported. In this study, ZnO NR diameter and c-axis length respond primarily at two different regions, UV and visible light, respectively. ZnO NR diameter exhibits UV absorption where large ZnO NR diameter area increases light absorption ability leading to high efficient electron-hole pair separation. On the other hand, ZnO NR c-axis length has a dominant effect in visible light resulting from a multiphoton absorption mechanism due to light reflection and trapping behavior in the free space between adjacent ZnO NRs. Furthermore, oxygen vacancies and defects in ZnO NRs are associated with the broad visible emission band of different energy levels also highlighting the possibility of the multiphoton absorption mechanism. It is demonstrated that the minimum average of ZnO NR c-axis length must satisfy the linear regression model of Z = 6.31d to initiate the multiphoton absorption mechanism under visible light. This work indicates the broadening of absorption spectrum from UV to visible light region by incorporating a controllable diameter and c-axis length on vertically aligned ZnO NRs, which is important in optimizing the design and functionality of electronic devices based on light absorption mechanism.
Noble metal nanostructures have been widely explored as an effective method to increase photon absorption and charge separation in plasmonic photocatalysis. In this study, we integrated two different noble metals, gold (Au) and silver (Ag), into Au/Ag bimetallic nanoparticles (BNPs) via solid-state thermal dewetting to investigate the room-temperature electrical conductivity, visible light absorption, and its effect on photoelectrochemical (PEC) activity. The Au/Ag BNPs give rise to extended visible light absorption range, exhibiting localized surface plasmon resonance (LSPR) effect that lead to strong surface-enhanced Raman spectroscopy. X-ray photoelectron spectroscopy shows binding energy shift in Au/Ag BNPs, suggesting electron transfer from Ag to Au where charge transport behavior can be tailored. Kelvin probe force microscopy and conductive atomic force microscopy displayed a significantly enhanced electrical conduction in Au/Ag BNPs due to the lowered Schottky barrier height. When the Au/Ag BNPs are incorporated onto ZnO semiconductor photoanode, the photoactivity was improved with lower charge transport resistance compared to monometallic and pristine ZnO. This work delivers a general approach to understand the plasmon-induced charge interaction, hence the photochemistry of noble metal BNP/semiconductor photoanode by incorporating a controllable composition ratio, which is capable of exploiting the enhanced electrical conduction and LSPR effect for PEC water splitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.