We present the synthesis and characterization of a fused-ring compound, dithieno[2,3-d:2',3'-d']thieno[3,2-b:4,5-b']dithiophene (pentathienoacene, PTA). In contrast to pentacene, PTA has a larger band gap than most semiconductors used in organic field-effect transistors (OFETs) and therefore is expected to be stable in air. The large pi-conjugated and planar molecular structure of PTA would also form higher molecular orders that are conductive for carrier transport. X-ray diffraction and atomic force microscopy experiments on its films show that the molecules stack in layers with their long axis upright from the surface. X-ray photoelectron spectroscopy suggests that there are no chemical bonds at the PTA/Au interface. OFETs based on the PTA have been constructed, and their performances as p-type semiconductors are also presented. A high mobility of 0.045 cm(2)/V s and an on/off ratio of 10(3) for a PTA OFET have been achieved, demonstrating the potential of PTA for application in future organic electronics.
Amino acid-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1) is mediated by Rag GTPases, which are recruited to the lysosome by the Ragulator complex consisting of p18, MP1, p14, HBXIP and C7orf59; however, the molecular mechanism is elusive. Here, we report the crystal structure of Ragulator, in which p18 wraps around the MP1-p14 and C7orf59-HBXIP heterodimers and the interactions of p18 with MP1, C7orf59, and HBXIP are essential for the assembly of Ragulator. There are two binding sites for the Roadblock domains of Rag GTPases: helix α1 of p18 and the two helices side of MP1-p14. The interaction of Ragulator with Rag GTPases is required for their cellular co-localization and can be competitively inhibited by C17orf59. Collectively, our data indicate that Ragulator functions as a scaffold to recruit Rag GTPases to lysosomal membrane in mTORC1 signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.