The rapidly increasing statistical power of cosmological imaging surveys requires us to reassess the regime of validity for various approximations that accelerate the calculation of relevant theoretical predictions. In this paper, we present the results of the 'N5K non-Limber integration challenge', the goal of which was to quantify the performance of different approaches to calculating the angular power spectrum of galaxy number counts and cosmic shear data without invoking the so-called 'Limber approximation', in the context of the Rubin Observatory Legacy Survey of Space and Time (LSST). We quantify the performance, in terms of accuracy and speed, of three non-Limber implementations: FKEM (CosmoLike), Levin, and matter, themselves based on different integration schemes and approximations. We find that in the challenge's fiducial 3x2pt LSST Year 10 scenario, FKEM (CosmoLike) produces the fastest run time within the required accuracy by a considerable margin, positioning it favourably for use in Bayesian parameter inference. This method, however, requires further development and testing to extend its use to certain analysis scenarios, particularly those involving a scale-dependent growth rate. For this and other reasons discussed herein, alternative approaches such as matter and Levin may be necessary for a full exploration of parameter space. We also find that the usual first-order Limber approximation is insufficiently accurate for LSST Year 10 3x2pt analysis on ℓ = 200 − 1000, whereas invoking the second-order Limber approximation on these scales (with a full non-Limber method at smaller ℓ) does suffice.
We present TXPipe, a modular, automated and reproducible pipeline for ingesting catalog data and performing all the calculations required to obtain quality-assured two-point measurements of lensing and clustering, and their covariances, with the metadata necessary for parameter estimation. The pipeline is developed within the Rubin Observatory Legacy Survey of Space and Time (LSST) Dark Energy Science Collaboration (DESC), and designed for cosmology analyses using LSST data. In this paper, we present the pipeline for the so-called "3×2pt" analysis -a combination of three twopoint functions that measure the auto-and cross-correlation between galaxy density and shapes. We perform the analysis both in real and harmonic space using TXPipe and other LSST-DESC tools. We validate the pipeline using Gaussian simulations and show that it accurately measures data vectors and recovers the input cosmology to the accuracy level required for the first year of LSST data under this simplified scenario. We also apply the pipeline to a realistic mock galaxy sample extracted from the CosmoDC2 simulation suite (Korytov et al. 2019). TXPipe establishes a baseline framework that can be built upon as the LSST survey proceeds. Furthermore, the pipeline is designed to be easily extended to science probes beyond the 3×2pt analysis. Subject headings: methods: statistical -dark energy -large-scale structure of the universe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.