Programmed cell-death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) pathway blockade is a promising therapy for the treatment of advanced cancers, including B-cell lymphoma. The clinical response to PD-1/ PD-L1 immunotherapy correlates with PD-L1 levels on tumor cells and other cells in the tumor microenvironment. Hence, it is important to understand the molecular mechanisms that regulate PD-L1 expression. Here, we report that histone deacetylase 3 (HDAC3) is a crucial repressor of PD-L1 transcription in B-cell lymphoma. Pan-HDACs or selective HDAC3 inhibitors could rapidly increase histone acetylation and recruitment of bromodomain protein BRD4 at the promoter region of PD-L1 gene, leading to activation of its transcription. Mechanically, HDAC3 and its putative associated corepressor SMRT were recruited to the PD-L1 promoter by the transcriptional repressor BCL6. In addition, HDAC3 inhibition reduced DNA methyltransferase 1 protein levels to indirectly activate PD-L1 transcription. Finally, HDAC3 inhibition increased PD-L1 expression on dendritic cells in the tumor microenvironment. Combining selective HDAC3 inhibitor with anti-PD-L1 immunotherapy enhanced tumor regression in syngeneic murine lymphoma model. Our findings identify HDAC3 as an important epigenetic regulator of PD-L1 expression and implicate combination of HDAC3 inhibition with PD-1/PD-L1 blockade in the treatment of B-cell lymphomas.
Gastric cancer tissue-derived MSC-like cells (GC-MSC) share similar characteristics to bone marrow MSC (BM-MSC); however, the phenotypical and functional differences and the molecular mechanism of transition between the two cell types remain unclear. Compared to BM-MSC, GC-MSC exhibited the classic phenotype of reactive stroma cells, a stronger gastric cancer promoting capacity and lower expression of miR-155-5p. Inhibition of miR-155-5p by transfecting miRNA inhibitor induced a phenotypical and functional transition of BM-MSC into GC-MSC-like cells, and the reverse experiment deprived GC-MSC of tumor-promoting phenotype and function. NF-kappa B p65 (NF-κB p65) and inhibitor of NF-kappa B kinase subunit epsilon (IKBKE/IKKε) were identified as targets of miR-155-5p and important for miRNA inhibitor activating NF-κB p65 in the transition. Inactivation of NF-κB by pyrrolidine dithiocarbamic acid (PDTC) significantly blocked the effect of miR-155-5p inhibitor on BM-MSC. IKBKE, NF-κB p65 and phospho-NF-κB p65 proteins were highly enriched in MSC-like cells of gastric cancer tissues, and the latter two were correlated with the pathological progression of gastric cancer. In GC-MSC, the expression of miR-155-5p was downregulated and NF-κB p65 protein was increased and activated. NF-κB inactivation by PDTC or knockdown of its downstream cytokines reversed the phenotype and function of GC-MSC. Taken together, our findings revealed that miR-155-5p downregulation induces BM-MSC to acquire a GC-MSC-like phenotype and function depending on NF-κB p65 activation, which suggests a novel mechanism underlying the cancer associated MSC remodeling in the tumor microenvironment and offers an effective target and approach for gastric cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.