Key PointsQuestionCould administration of convalescent plasma transfusion be beneficial in the treatment of critically ill patients with coronavirus disease 2019 (COVID-19)?FindingsIn this uncontrolled case series of 5 critically ill patients with COVID-19 and acute respiratory distress syndrome (ARDS), administration of convalescent plasma containing neutralizing antibody was followed by an improvement in clinical status.MeaningThese preliminary findings raise the possibility that convalescent plasma transfusion may be helpful in the treatment of critically ill patients with COVID-19 and ARDS, but this approach requires evaluation in randomized clinical trials.
Background: The ABO blood group system has been associated with multiple infectious diseases, including hepatitis B, dengue haemorrhagic fever and so on. Coronavirus disease 2019 (COVID-19) is a new respiratory infectious disease and the relationship between COVID-19 and ABO blood group system needs to be explored urgently. Methods: A hospital-based case-control study was conducted at Zhongnan Hospital of Wuhan University from 1 January 2020 to 5 March 2020. A total of 105 COVID-19 cases and 103 controls were included. The blood group frequency was tested with the chi-square statistic, and odds ratios (ORs) with 95% confidence intervals (CIs) were calculated between cases and controls. In addition, according to gender, the studied population was divided into two subgroups, and we assessed the association between cases and controls by gender. Finally, considering lymphopenia as a feature of COVID-19, the relationship between the ABO blood group and the lymphocyte count was determined in case samples. Results: The frequencies of blood types A, B, AB, and O were 42.8, 26.7, 8.57, and 21.9%, respectively, in the case group. Association analysis between the ABO blood group and COVID-19 indicated that there was a statistically significant difference for blood type A (P = 0.04, OR = 1.33, 95% CI = 1.02-1.73) but not for blood types B, AB or O (P = 0.48, OR = 0.90, 95% CI = 0.66-1.23; P = 0.61, OR = 0.88, 95% CI = 0.53-1.46; and P = 0.23, OR = 0.82, 95% CI = 0.58-1.15, respectively). An analysis stratified by gender revealed that the association was highly significant between blood type A in the female subgroup (P = 0.02, OR = 1.56, 95% CI = 1.08-2.27) but not in the male subgroup (P = 0.51, OR = 1.14, 95% CI = 0.78-1.67). The average level of lymphocyte count was the lowest with blood type A in patients, however, compared with other blood types, there was still no significant statistical difference. Conclusions: Our findings provide epidemiological evidence that females with blood type A are susceptible to COVID-19. However, these research results need to be validated in future studies.
A new triterpenoid named alisol O ( 1) was isolated from the rhizomes of Alisma orientalis, together with six known compounds: alisol A 24-acetate ( 2), 25-anhydroalisol A ( 3), 13 beta,17 beta-epoxyalisol A ( 4), alisol B 23-acetate ( 5), alisol F ( 6), and alisol F 24-acetate ( 7). Based on 1D and 2D-NMR data (HMQC, HMBC, COSY, ROESY), the structure of the new compound was deduced to be 11-dehydroxy-12-dehydroalisol F-24-acetate ( 1). Compounds 2 - 7 exhibited inhibitory activity in vitro on hepatitis B virus (HBV) surface antigen (HBsAg) secretion of the Hep G2.2.15 cell line with IC (50) values of 2.3, 11.0, 15.4, 14.3, 0.6 and 7.7 microM, and on HBV e antigen (HBeAg) secretion with IC (50) values of 498.1, 17.6, 41.0, 19.9, 8.5 and 5.1 microM, respectively.
BackgroundDiscoidin Domain Receptor 1 (DDR1) belongs to the family of collagen receptor tyrosine kinases that confers the progression of various cancers. Aberrant expression of DDR1 was detected in several human cancers including ovarian cancer, which had been shown to increase the migration and invasion of tumor cells. However, the precise mechanisms underlying the abnormal expression of DDR1 in ovarian cancer has not been well investigated in previous studies.ResultsIn this work, a negative correlation between DDR1 and a tumor suppressor miRNA, miR-199a-3p, was observed in ovarian cancer tissues. Furthermore, in vitro experimental results confirmed that miR-199a-3p decreased the expression of DDR1 via targeting the 3’UTR of DDR1 mRNA. To explore the mechanisms for miR-199a-3p silence in ovarian cancer, the methylation status of the miR-199a promoter was analyzed in ovarian epithelial or cancer cells by methylation-specific PCR and bisulphite sequencing. As expected, the miR-199a promoter was hypermethylated in ovarian cancer cells but not in normal ovarianepithelial cells. Interestingly, knockdown of DNA methyltransferase 3A (DNMT3A) notably increased miR-199a-3p level and then attenuated the expression of DDR1 in ovarian cancer cells, which suggested that DNMT3A was responsible for the miR-199a promoter hypermethylation. Phenotype experiments showed that overexpression of miR-199a-3p significantly impaired the migratory, invasive, and tumorigenic capabilities of ovarian cancer cells as well as enhanced cisplatin resistance through inhibiting DDR1 expression.ConclusionThese findings demonstrate a critical role of miR-199a-3p/DDR1 pathway in ovarian cancer development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.