AbstractChloride (Cl–) is pervasive in saline soils, and research on its influence on plants has mainly focused on its role as an essential nutrient and its toxicity when excessive accumulation occurs. However, the possible functions of Cl– in plants adapting to abiotic stresses have not been well documented. Previous studies have shown that the salt tolerance of the xerophytic species Pugionium cornutum might be related to high Cl– accumulation. In this study, we investigated the Cl–-tolerant characteristics and possible physiological functions of Cl– in the salt tolerance and drought resistance of P. cornutum. We found that P. cornutum can accumulate a large amount of Cl– in its shoots, facilitating osmotic adjustment and turgor generation under saline conditions. Application of DIDS (4,4´-diisothiocyanostilbene-2,2´-disulfonic acid), a blocker of anion channels, significantly inhibited Cl– uptake, and decreased both the Cl– content and its contribution to leaf osmotic adjustment, resulting in the exacerbation of growth inhibition in response to NaCl. Unlike glycophytes, P. cornutum was able to maintain NO3– homeostasis in its shoots when large amounts of Cl– were absorbed and accumulated. The addition of NaCl mitigated the deleterious effects of osmotic stress on P. cornutum because Cl– accumulation elicited a strong osmotic adjustment capacity. These findings suggest that P. cornutum is a Cl–-tolerant species that can absorb and accumulate Cl– to improve growth under salt and drought stresses.
The xerophyte Pugionium cornutum adapts to salt stress by accumulating inorganic ions (e.g., Cl − ) for osmotic adjustment and enhancing the activity of antioxidant enzymes, but the associated molecular basis remains unclear. In this study, we first found that P. cornutum could also maintain cell membrane stability due to its prominent ROS-scavenging ability and exhibits efficient carbon assimilation capacity under salt stress. Then, the candidate genes associated with the important physiological traits of the salt tolerance of P. cornutum were identified through transcriptomic analysis. The results showed that after 50 mM NaCl treatment for 6 or 24 h, multiple genes encoding proteins facilitating Cl − accumulation and NO 3 − homeostasis, as well as the transport of other major inorganic osmoticums, were significantly upregulated in roots and shoots, which should be favorable for enhancing osmotic adjustment capacity and maintaining the uptake and transport of nutrient elements; a large number of genes related to ROS-scavenging pathways were also significantly upregulated, which might be beneficial for mitigating salt-induced oxidative damage to the cells. Meanwhile, many genes encoding components of the photosynthetic electron transport pathway and carbon fixation enzymes were significantly upregulated in shoots, possibly resulting in high carbon assimilation efficiency in P. cornutum. Additionally, numerous salt-inducible transcription factor genes that probably regulate the abovementioned processes were found. This work lays a preliminary foundation for clarifying the molecular mechanism underlying the adaptation of xerophytes to harsh environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.