Finite-time thermodynamic models for an Otto cycle, an Atkinson cycle, an over-expansion Miller cycle (M1), an LIVC Miller cycle through late intake valve closure (M2) and an LIVC Miller cycle with constant compression ratio (M3) have been established. The models for the two LIVC Miller cycles are first developed; and the heat-transfer and friction losses are considered with the effects of real engine parameters. A comparative analysis for the energy losses and performances has been conducted. The optimum compression-ratio ranges for the efficiency and effective power are different. The comparative results of cycle performances are influenced together by the ratios of the energy losses and the cycle types. The Atkinson cycle has the maximum peak power and efficiency, but the minimum power density; and the M1 cycle can achieve the optimum comprehensive performances. The less net fuel amount and the high peak cylinder pressure (M3 cycle) have a significantly adverse effect on the loss ratios of the heat-transfer and friction of the M2 and M3 cycles; and the effective power and energy efficiency are always lower than the M1 and Atkinson cycles. When greatly reducing the weights of the heat-transfer and friction, the M3 cycle has significant advantage in the energy efficiency. The results obtained can provide guidance for selecting the cycle type and optimizing the performances of a real engine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.