Neural networks have become state-of-the-art computer vision tools for tasks that learn implicit representations of geometrical scenes. This paper proposes a two-part network architecture that exploits a view-synthesis network to understand a context scene and a graph convolutional network to generate a shape body model of an object within the field of view of a spacecraft’s optical navigation sensors. Once the first part of the network’s architecture understands the spacecraft’s environment, it can generate images from novel observations. The second part uses a multiview set of images to construct a 3D graph-based representation of the object. The proposed network pipeline produces shape models with accuracies that compete with state-of-the-art methods currently used for missions to small bodies. The network pipeline can be trained for multi-environment missions. Moreover, the onboard implementation may be more cost-effective than the current state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.