a c m s i g c o m m ABSTRACTVirtualizing and sharing networked resources have become a growing trend that reshapes the computing and networking architectures. Embedding multiple virtual networks (VNs) on a shared substrate is a challenging problem on cloud computing platforms and large-scale sliceable network testbeds.In this paper we apply the Markov Random Walk (RW) model to rank a network node based on its resource and topological attributes. This novel topology-aware node ranking measure reflects the relative importance of the node. Using node ranking we devise two VN embedding algorithms. The first algorithm maps virtual nodes to substrate nodes according to their ranks, then embeds the virtual links between the mapped nodes by finding shortest paths with unsplittable paths and solving the multi-commodity flow problem with splittable paths. The second algorithm is a backtracking VN embedding algorithm based on breadth-first search, which embeds the virtual nodes and links during the same stage using node ranks. Extensive simulation experiments show that the topology-aware node rank is a better resource measure and the proposed RW-based algorithms increase the long-term average revenue and acceptance ratio compared to the existing embedding algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.