Aberrant mechanical factor is one of the etiologies of the intervertebral disc (IVD) degeneration (IVDD). However, the exact molecular mechanism of spinal mechanical loading stress-induced IVDD has yet to be elucidated due to a lack of an ideal and stable IVDD animal model. The present study aimed to establish a stable IVDD mouse model and evaluated the effect of aberrant spinal mechanical loading on the pathogenesis of IVDD. Eight-week-old male mice were treated with lumbar spine instability (LSI) surgery to induce IVDD. The progression of IVDD was evaluated by μCT and Safranin O/Fast green staining analysis. The metabolism of extracellular matrix, ingrowth of sensory nerves, pyroptosis in IVDs tissues were determined by immunohistological or real-time PCR analysis. The apoptosis of IVD cells was tested by TUNEL assay. IVDD modeling was successfully produced by LSI surgery, with substantial reductions in IVD height, BS/TV, Tb.N. and lower IVD score. LSI administration led to the histologic change of disc degeneration, disruption of the matrix metabolism, promotion of apoptosis of IVD cells and invasion of sensory nerves into annulus fibrosus, as well as induction of pyroptosis. Moreover, LSI surgery activated Wnt signaling in IVD tissues. Mechanical instability caused by LSI surgery accelerates the disc matrix degradation, nerve invasion, pyroptosis, and eventually lead to IVDD, which provided an alternative mouse IVDD model.
To explore the pharmacological mechanisms of Liuwei Dihuang Decoction (LWDHD) against intervertebral disc (IVD) degeneration (IVDD) via network pharmacology analysis combined with experimental validation. Methods: First, active ingredients and related targets of LWDHD, as well as related genes of IVDD, were collected from public databases. The protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed to predict the core targets and pathways of LWDHD against IVDD. Secondly, the IVDD model of mice treated with LWDHD was selected to validate the major targets predicted by network pharmacology. Results: By searching the intersection of the active ingredient targets and IVDD targets, a total of 110 targets matched the related targets of 30 active ingredients in LWDHD and IVDD were retrieved. PPI network analysis indicated that 17 targets, including Caspase-3, IL-1β, P53, etc., were hub targets. GO and KEGG enrichment analyses showed that the apoptosis pathway was enriched by multiple targets and served as the target for in vivo experimental study validation. The results of animal experiments revealed that LWDHD administration not only restored the decrease in disc height and abnormal degradation of matrix metabolism in IVDD mice but also reversed the high expression of Bax, Caspase-3, IL-1β, P53, and low expression of Bcl-2, thereby inhibiting the apoptosis of IVD tissue and ameliorating the progression of IVDD. Conclusion: Using a comprehensive network pharmacology approach, our findings predicted the active ingredients and potential targets of LWDHD intervention for IVDD, and some major target proteins involved in the predictive signaling pathway were validated experimentally, which gave us a new understanding of the pharmacological mechanism of LWDHD in treating IVDD at the comprehensive level.
Numerical simulation is performed for sessile droplet spreading and penetration on porous surfaces in this study. The volume of the fluid model is used to accurately track the droplet deformation, and the pressure implicit split operator algorithm is presented to calculate the coupling of the droplet pressure and velocity. The effects of droplet characteristics, porous media characteristics, and the wettability of liquid/ porous media on sessile droplet spreading and permeation are investigated in detail. The studied problem can be characterized by four control parameters: the Bond number, Darcy number, static equilibrium contact angle, and ratio between the initial diameter of the droplet and the particle diameter in the porous substrate. The numerical simulations show that droplet spreading and penetration are competitive with each other and dependent on the above four dimensionless parameters. The results obtained in this work are of benefit to provide deep insights into the dynamic behavior of sessile droplet on porous substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.