Missing data is a common and inevitable phenomenon. In practical applications, the datasets usually contain noises for various reasons. Most of the existing missing data imputing algorithms are affected by noises which reduce the accuracy of the imputation. This paper proposes a noise-aware missing data multiple imputation algorithm NPMI in static data. Different multiple imputation models are proposed according to the missing mechanism of data. Secondly, the method to determine the imputation order of multivariablesmissing is given. A random sampling consistency algorithm is proposed to estimate the initial values of the parameters of the multiple imputation model to reduce the influence of noise data and improve the algorithm’s robustness. Experiments on two real datasets and two synthetic datasets verify the accuracy and efficiency of the proposed NPMI algorithm, and the results are analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.