Monoclonal antibodies (mAbs) or their derivatives are often used as the targeted ligands in the ligand targeted liposomes (LTLs). LTLs modified with mAbs or their derivatives are defined as immunoliposomes. Immunoliposomes can be designed to improve the pharmacological properties of conventional drugs. The development of immunoliposomes, which perfectly combines antibody engineering and liposomes, is becoming a possible state-of-the-art in liposome research. This review discusses the recent characterization and therapeutic effects of immunoliposomes in cancer therapy. The recent advances in the field of immunoliposomes for the treatment of cancer are summarized as follows: antibody engineering, current antibody conjugation strategies, characterization and therapeutic effects of immunoliposomes and the future perspective of immunoliposomes. Although antibody targeted immunoliposomes are being developed rapidly, there has been still a number of hot spots in research that require sustained effort for success. It is reasonable to predict that immunoliposomes will be approved for clinic use, and patients will benefit much from this cancer targeted therapy.
SummaryThis prospective, double-blind trial was designed to evaluate the effect of inhaled budesonide on lung function and the inflammatory response to one-lung ventilation. One hundred patients scheduled for lobectomy were allocated randomly to pre-operative nebulised budesonide or saline. Bronchoalveolar lavage fluid samples were collected from either the collapsed or the ventilated lung both before one-lung ventilation and 30 min after re-expansion of the lung. The concentrations of serum and bronchoalveolar lavage fluid cytokines were determined. Budesonide treatment, compared with saline, reduced both peak (mean (SD) 3.7 (0.4) vs 2.5 (0.2) kPa) and plateau (mean (SD) 3.1 (0.2) vs 2.2 (0
This study aims to examine the impact of ursodeoxycholic acid (UDCA) on pulmonary edema and explore the underlying molecular mechanisms. The effects of UDCA on pulmonary edema were assessed through hematoxylin and eosin (H&E) staining, lung dry/wet (W/D) ratio, TNF-α/IL-1β levels of bronchoalveolar lavage fluid (BALF), protein expression of epithelial sodium channel (ENaC), and Na + /K + -ATPase. Besides, the detailed mechanisms were explored in primary rat alveolar type (AT) II epithelial cells by determining the effects of BOC-2 (ALX [lipoxin A4 receptor] inhibitor), Rp-cAMP (cAMP inhibitor), LY294002 (PI3K inhibitor), and H89 (PKA inhibitor) on the therapeutic effects of UDCA against lipopolysaccharide (LPS)-induced changes. Histological examination suggested that LPS-induced lung injury was obviously attenuated by UDCA. BALF TNF-α/IL-1β levels and lung W/D ratios were decreased by UDCA in LPS model rats. UDCA stimulated alveolar fluid clearance (AFC) though the upregulation of ENaC and Na + /K + -ATPase. BOC-2, Rp-cAMP, and LY294002 largely suppressed the therapeutic effects of UDCA. Significant attenuation of pulmonary edema and lung inflammation was revealed in LPS-challenged rats after the UDCA treatment. The therapeutic efficacy of UDCA against LPS was mainly achieved through the ALX/cAMP/PI3K pathway. Our results suggested that UDCA might be a potential drug for the treatment of pulmonary edema induced by LPS. K E Y W O R D S alveolar fluid clearance, epithelial sodium channel, Na + /K + -ATPase, pulmonary edema, ursodeoxycholic acid
The epithelial barrier of the lung is destroyed during acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) due to the apoptosis of alveolar epithelial cells (AECs). Therefore, treatments that block AEC apoptosis might be a therapeutic strategy to ameliorate ALI. Based on recent evidence, A2B adenosine receptor (A2BAR) plays an important role in ALI in several different animal models, but its exact function in AECs has not been clarified. We investigated the role of A2BAR in AEC apoptosis in a mouse model of oleic acid (OA)-induced ALI and in hydrogen peroxide (HO)-induced AEC (A549 cells and MLE-12 cells) injury. Mice treated with BAY60-6583, a selective A2BAR agonist, showed lower AEC apoptosis rates than mice treated with OA. However, the role of BAY60-6583 in OA-induced ALI was attenuated by a specific blocker of A2BAR, PSB1115. A2BAR activation decreased HO-induced cell apoptosis in vitro, as characterized by the translocation of apoptotic proteins, the release of cytochrome c, and the activation of caspase-3 and poly (ADP ribose) polymerase 1 (PARP-1). In addition, apoptosis was required for the phosphorylation of ERK1/2, p38, and JNK. Importantly, compared with cells transfected with the A2BAR-siRNA, an ERK inhibitor or p38 inhibitor exhibited decreased apoptotic ratios and cleaved caspase-9 and cleaved PARP-1 levels, whereas the JNK inhibitor displayed increases in these parameters. In conclusion, A2BAR activation effectively attenuated OA-induced ALI by inhibiting AEC apoptosis and mitigated HO-induced AEC injury by suppressing the p38 and ERK1/2-mediated mitochondrial apoptosis pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.