Deep neural networks (DNNs) have shown very promising results for various image restoration (IR) tasks. However, the design of network architectures remains a major challenging for achieving further improvements. While most existing DNN-based methods solve the IR problems by directly mapping low quality images to desirable high-quality images, the observation models characterizing the image degradation processes have been largely ignored. In this paper, we first propose a denoising-based IR algorithm, whose iterative steps can be computed efficiently. Then, the iterative process is unfolded into a deep neural network, which is composed of multiple denoisers modules interleaved with back-projection (BP) modules that ensure the observation consistencies. A convolutional neural network (CNN) based denoiser that can exploit the multiscale redundancies of natural images is proposed. As such, the proposed network not only exploits the powerful denoising ability of DNNs, but also leverages the prior of the observation model. Through end-to-end training, both the denoisers and the BP modules can be jointly optimized. Experimental results on several IR tasks, e.g., image denoisig, super-resolution and deblurring show that the proposed method can lead to very competitive and often state-of-the-art results on several IR tasks, including image denoising, deblurring and super-resolution.Index Terms-denoising-based image restoration, deep neural network, denoising prior, image restoration.
The rapid development of light detection and ranging (LiDAR) techniques is advancing ecological and forest research. During the last decade, numerous single tree segmentation techniques have been developed using airborne LiDAR data. However, accurate crown segmentation using terrestrial or mobile LiDAR data, which is an essential prerequisite for extracting branch level forest characteristics, is still challenging mainly because of the difficulties posed by tree crown intersection and irregular crown shape. In the current work, we developed a comparative shortest-path algorithm (CSP) for segmenting tree crowns scanned using terrestrial (T)-LiDAR and mobile LiDAR. The algorithm consists of two steps, namely trunk detection and subsequent crown segmentation, with the latter inspired by the well-proved metabolic ecology theory and the ecological fact that vascular plants tend to minimize the transferring distance to the root. We tested the algorithm on mobile-LiDAR-scanned roadside trees and T-LiDAR-scanned broadleaved and coniferous forests in China. Point-level quantitative assessments of the segmentation results showed that for mobile-LiDAR-scanned roadside trees, all the points were classified to their corresponding trees correctly, and for T-LiDAR-scanned broadleaved and coniferous forests, kappa coefficients ranging from 0.83 to 0.93 were obtained. We believe that our algorithm will make a contribution to solving the problem of crown segmentation in T-LiDAR scanned-forests, and might be of interest to researchers in LiDAR data processing and to forest ecologists. In addition, our research highlights the advantages of using ecological theories as guidelines for processing LiDAR data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.