The effect of the properties of the polymer materials, such as molecular weight, molten viscosity, crystallization rate and the particle size of the powder, on the quality of selective laser sintering (SLS) parts is researched. The results indicate that the molecular weight affects the quality of the SLS parts through the melting viscosity. SLS parts of higher density can be fabricated with polymer materials of lower melting viscosity. Crystallinity largely affects the precision of the SLS part-shrinkage is more serious with increasing crystallinity. SLS parts sintered with polymer powder materials, whose melting peak and crystalline peak differ greatly, have high dimensional precision. The particle size of the powder affects not only the precision but also the density of the SLS part. The appropriate particle size is about 75-100 mm.
Mutations in mitochondrial genome have epistatic effects on organisms depending on
the nuclear background, but a role for the compatibility of mitochondrial-nuclear
genomes (mit-n) in the quantitative nature of a complex trait remains unexplored. We
studied a panel of recombinant inbred advanced intercrossed lines (RIAILs) of C.
elegans that were established from a cross between the N2 and HW strains. We
determined the HW nuclear genome content and the mitochondrial type (HW or N2) of
each RIAIL strain. We found that the degree of mit-n compatibility was correlated
with the lifespans but not the foraging behaviors of RIAILs. Several known
aging-associated QTLs individually showed no relationship with mitotypes but
collectively a weak trend consistent with a role in mit-n compatibility. By
association mapping, we identified 293 SNPs that showed linkage with lifespan and a
relationship with mitotypes consistent with a role in mit-n compatibility. We
further found an association between mit-n compatibility and several functional
characteristics of mitochondria as well as the expressions of genes involved in the
respiratory oxidation pathway. The results provide the first evidence implicating
mit-n compatibility in the quantitative nature of a complex trait, and may be
informative to certain evolutionary puzzles on hybrids.
Dynamic change of mitochondrial morphology and distribution along neuronal branches are essential for neural circuitry formation and synaptic efficacy. However, the underlying mechanism remains elusive. We show here that Pink1 knockout (KO) mice display defective dendritic spine maturation, reduced axonal synaptic vesicles, abnormal synaptic connection, and attenuated long-term synaptic potentiation (LTP). Drp1 activation via S616 phosphorylation rescues deficits of spine maturation in Pink1 KO neurons. Notably, mice harboring a knockin (KI) phosphor-null Drp1S616A recapitulate spine immaturity and synaptic abnormality identified in Pink1 KO mice. Chemical LTP (cLTP) induces Drp1S616 phosphorylation in a PINK1-dependent manner. Moreover, phosphor-mimetic Drp1S616D restores reduced dendritic spine localization of mitochondria in Pink1 KO neurons. Together, this study provides the first in vivo evidence of functional regulation of Drp1 by phosphorylation and suggests that PINK1-Drp1S616 phosphorylation coupling is essential for convergence between mitochondrial dynamics and neural circuitry formation and refinement.
Content-based image retrieval (CBIR) has been an active research theme in the computer vision community for over two decades. While the field is relatively mature, significant research is still required in this area to develop solutions for practical applications. One reason that practical solutions have not yet been realized could be due to a limited understanding of the cognitive aspects of the human vision system. Inspired by three cognitive properties of human vision, namely, hierarchical structuring, color perception and embedded compressive sensing, a new CBIR approach is proposed. In the proposed approach, the Hue, Saturation and Value (HSV) color model and the Similar Gray Level Co-occurrence Matrix (SGLCM) texture descriptors are used to generate elementary features. These features then form a hierarchical representation of the data to which a two-dimensional compressive sensing (2D CS) feature mining algorithm is applied. Finally, a weighted feature matching method is used to perform image retrieval. We present a comprehensive set of results of applying our proposed Hierarchical Visual Perception Enabled 2D CS approach using publicly available datasets and demonstrate the efficacy of our techniques when compared with other recently published, state-of-the-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.