Background: To observe the bacteriostatic effect of berberine on MRSA, while also exploring the bacteriostatic mechanism of BBR on MRSA. Methods: The MIC of BBR, gentamicin, levofloxacin,amikacin was determined by broth microdilution, while the MICs of BBR combined with gentamicin, levofloxacin,amikacin against MRSA were determined using microdilution checkerboard. Time-killing test were used to determine the kinetics of BBR combined with antibiotics for MRSA. We used conductivity to assess the changes in membrane permeability in response to BBR on MRSA, while also investigating the changes in MRSA morphology by TEM. RNA-sequencing was used to analyze the expression of differentially expressed genes in USA300 after its treatment with BBR. Results: The MICs range of BBR on MRSA was 32-256 µg/mL. The range of FICIs of BBR combined with gentamicin, levofloxacin,amikacin were 0.53-1.06, 0.62-1.5, 0.16-1.25. After co-culturing MRSA with BBR at 512 ug/mL, 64 ug/mL,8 ug/mL, respectively, the conductivity of these group increased by 8.14%,13.08% and 12.01%, respectively. Using TEM, we found that low-concentration of BBR had no significant effect on MRSA structure, medium-concentration of BBR thinned the cell wall of MRSA, while high-concentration of BBR destroyed cell wall, leading to bacterial lysis. RNA-sequencing results showed that there were 754 differentially expressed genes in the high-concentration group compared with the control group, of which 561 genes were up-regulated and 193 genes were down-regulated. Compared with the low-concentration group, there were 590 differentially expressed genes, of which 402 genes were up-regulated and 188 genes were down-regulated. Compared with the control group, 19 genes were differentially expressed in the low-concentration group, of which 11 genes were up-regulated,8 genes were down-regulated. Conclusions: BBR displayed an excellent bacteriostatic effect on MRSA. BBR combined with antibiotics significantly enhanced the bacteriostatic effect on MRSA. BBR inhibited bacteria by destroying the structure of cell wall. RNA-sequencing results demonstrated that the expression of cell wall hydrolysis genes and virulence factor were significantly differentially expressed on MRSA.
Background: To observe the bacteriostatic effect of berberine (BBR) and BBR combined with gentamicin (GEN), levofloxacin (LEV) and amikacin (AMI) on Methicillin resistant Staphylococcus aureus (MRSA), while also exploring the bacteriostatic mechanism of BBR on MRSA. Results: The MICs range of BBR on 26 strains of MRSA was 32-256 µg/mL. BBR combined with GEN, LEV and AMI had obvious bacteriostatic effect on MRSA. After co-culturing MRSA with BBR at 512 µg/mL, 64 µg/mL and 8 µg/mL, respectively, the electrical conductivity increased, compared with the control group, by 8.14%, 13.08% and 12.01%, respectively. Using transmission electron microscopy, we found that low concentration of BBR (8 µg/mL; 1/8 MIC) caused no significant damage to MRSA, and the bacterial structure of MRSA remained intact, while high concentration of BBR (512 µg/mL; 8 MIC) induced the destruction and dissolution of MRSA cell wall structure and the leakage of bacterial contents, leading to bacterial lysis. RNA-sequencing results showed that there were 754 differentially expressed genes in the high concentration group compared with the normal control group. Compared with the low concentration group, there were 590 differentially expressed genes in the high concentration group. Compared with the control group, only 19 genes were differentially expressed in the low concentration group. The up-regulated genes are mainly related to the cell wall hydrolysis regulatory genes, while the down-regulated genes are mainly related to the serine protease family. Conclusions: BBR displayed an excellent bacteriostatic effect on MRSA. BBR combined with GEN and AMI significantly enhanced the bacteriostatic effect on MRSA, while BBR combined with LEV showed no significant change in the bacteriostatic effect on MRSA. BBR inhibited bacteria by destroying and dissolving the structure of MRSA cell wall. RNA-sequencing results further demonstrated that the expression of cell wall hydrolysis genes ssaA, lytM and virulence factor serine protease genes were significantly differentially expressed when high concentration BBR treated on MRSA.
Background: To observe the bacteriostatic effect of berberine (BBR) and BBR combined with gentamicin (GEN), levofloxacin (LEV) and amikacin (AMI) on Methicillin resistant Staphylococcus aureus (MRSA), while also exploring the bacteriostatic mechanism of BBR on MRSA. Methods: The minimal inhibitory concentration (MIC) of BBR, GEN, LEV and AMI on 26 clinical MRSA strains was determined by broth microdilution, while the MICs of BBR combined with GEN, LEV and AMI against MRSA were determined using a microdilution checkerboard. Time-killing curves were used to determine the kinetics of BBR combined with antibiotics for MRSA. We used conductivity tests to assess the changes in membrane permeability in response to BBR on MRSA, while also investigating the changes in MRSA morphology by transmission electron microscopy. RNA-sequencing was used to analyze the expression of differentially expressed genes in reference strain USA300 after its treatment with BBR at different concentrations.Results: The MICs range of BBR on 26 strains of MRSA was 32-256 µg/mL. BBR combined with GEN, LEV and AMI had obvious bacteriostatic effect on MASA. After co-culturing MRSA with BBR at 512 ug/mL, 64 ug/mL and 8 ug/mL, respectively, the electrical conductivity increased, compared with the control group, by 8.14%, 13.08% and 12.01%, respectively. Using transmission electron microscopy, we found that low concentration of BBR (8 ug/mL) had no significant effect on MRSA structure (keeping intact), medium concentration of BBR (64 ug/mL) thinned the cell wall of MRSA, while high concentration of BBR (512 ug/mL) induced the destruction and dissolution of MRSA cell wall structure and the leakage of bacterial contents, leading to bacterial lysis. RNA-sequencing results showed that there were 754 differentially expressed genes in the high concentration group compared with the normal control group. Compared with the low concentration group, there were 590 differentially expressed genes in the high concentration group. Compared with the control group, only 19 genes were differentially expressed in the low concentration group. The up-regulated genes are mainly related to the cell wall hydrolysis regulatory genes, while the down-regulated genes are mainly related to the serine protease family.Conclusions: BBR displayed an excellent bacteriostatic effect on MRSA. BBR combined with GEN and AMI significantly enhanced the bacteriostatic effect on MRSA, while BBR combined with LEV showed no significant change in the bacteriostatic effect on MRSA. BBR inhibited bacteria by destroying and dissolving the structure of MRSA cell wall. RNA-sequencing results further demonstrated that the expression of cell wall hydrolysis genes ssaA, lytM and virulence factor serine protease genes were significantly differentially expressed when high concentration BBR treated on MRSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.