In this paper, we investigate the artificial noiseaided jamming design for a transmitter equipped with large antenna array in Rician fading channels. We figure out that when the number of transmit antennas tends to infinity, whether the secrecy outage happens in a Rician channel depends on the geometric locations of eavesdroppers. In this light, we first define and analytically describe the secrecy outage region (SOR), indicating all possible locations of an eavesdropper that can cause secrecy outage. After that, the secrecy outage probability (SOP) is derived, and a jamming-beneficial range, i.e., the distance range of eavesdroppers which enables uniform jamming to reduce the SOP, is determined. Then, the optimal power allocation between messages and artificial noise is investigated for different scenarios. Furthermore, to use the jamming power more efficiently and further reduce the SOP, we propose directional jamming that generates jamming signals at selected beams (mapped to physical angles) only, and power allocation algorithms are proposed for the cases with and without the information of the suspicious area, i.e., possible locations of eavesdroppers. We further extend the discussions to multiuser and multi-cell scenarios. At last, numerical results validate our conclusions and show the effectiveness of our proposed jamming power allocation schemes.Index Terms-Jamming, massive MIMO, outage, security. power efficiency [4]. When used for beamforming, massive MIMO leads to sharp beam patterns as well as low power Manuscript
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.