The nitrogen (N) and phosphorus (P) costs of food production have increased greatly in China during the last 30 years, leading to eutrophication of surface waters, nitrate leaching to groundwater, and greenhouse gas emissions. Here, we present the results of scenario analyses in which possible changes in food production-consumption in China for the year 2030 were explored. Changes in food chain structure, improvements in technology and management, and combinations of these on food supply and environmental quality were analyzed with the NUFER model. In the business as usual scenario, N and P fertilizer consumption in 2030 will be driven by population growth and diet changes and will both increase by 25%. N and P losses will increase by 44 and 73%, respectively, relative to the reference year 2005. Scenarios with increased imports of animal products and feed instead of domestic production, and with changes in the human diet, indicate reductions in fertilizer consumption and N and P losses relative to the business as usual scenario. Implementation of a package of integrated nutrient management measures may roughly nullify the increases in losses in the business as usual scenario and may greatly increase the efficiency of N and P throughout the whole food chain.
China's economic boom in recent decades has stimulated consumer demand for animal products and consequently, a vast expansion in animal production. From 1978 to 2006, the number of animals increased by 322% for pigs, 209% for poultry, and 2770% for dairy cattle. The objective of the present study was to quantify nitrogen mass flow in China's animal production system at the national scale and to elucidate potential environmental implications. A comprehensive analysis was performed combining statistical records with data from the scientific literature and supplemental survey information. Results indicate that approximately 18 Mt of N flowed through the Chinese animal production system in 2006. Nitrogen input to the system was from various feed materials, including 6.8 Mt (38% of total) from roughage, 4.4 Mt (24%) from byproducts, 2.3 Mt (13%) from cereal grains, and 1.6 Mt (9%) each from crop residues and oilseed cakes, with the remaining N (16%) obtained from other feedstuffs. Nitrogen outputs from the system included edible animal products (2.4 t, 13% of total), nonedible animal parts (e.g., bones, skins) (3.8 Mt, 21%), and excreta (12 Mt, 66%). At the national level, the excreta would average 28 Mg (as excreted) and 90 kg N ha(-1) of cropland. However, at the provincial level, it varied from 1 Mg ha(-1) (5 kg N ha(-1)) in Qinghai to 97 Mg ha(-1) (243 kg N ha(-1)) in Sichuan. In regions with excreta in the intermediate rate (e.g., Hebei Province, 115 kg N ha(-1)) or high rare (e.g., Sichuan Province, 243 kg N ha(-1)), animal manure contributes significantly to nutrients polluting groundwater and/or surface waters. It is crucial for China to develop and implement proper management practices to maximum the beneficial use of the 12 Mt excreta N while minimizing its environmental footprint.
Background: More and more studies demonstrated that genetic variation at C1GALT1 influences Gd-IgA1 level in IgAN. However, whether the expression of β1, 3-galactosyltransferase (β1, 3Gal-T) was influenced may provide insights into how Gd-IgA1 levels are controlled in IgAN. Methods: Thirty IgAN patients diagnosed in Tianjin Medical University General Hospital from April to September 2018 and 30 healthy volunteers whose age and gender matched with patients were enrolled in this study. Total Gd-IgA1 levels in plasma were determined by ELISA and C1GALT1 levels were determined by RT-PCR. Four databases (PubMed, EMBASE, CNKI, WanFang Medical Network) were searched to identify eligible studies that evaluated a difference in the expression of C1GALT1 in IgAN patients compared with total controls (non-IgAN and health controls). The C1GALT1C1 expression levels, which was indispensable to β1, 3Gal-T of IgA1, was also been compared. Results: Gd-IgA1 levels were remarkable higher in IgAN patients compared with healthy control. The expression levels of C1GALT1 gene were remarkably down-regulated in IgAN patients compared with healthy control. And the mRNA level of C1GALT1 was inversely correlated to Gd-IgA1 levels. In meta-analysis, six articles including 316 participants that analyzed the expression of β1, 3Gal-T were met inclusion criteria. There was no significant difference in the expression of C1GALT1 between IgAN patients compared with controls. And we found patients with IgAN had lower levels of C1GALT1 gene expression in the B cells compared to controls. The C1GALT1C1 levels in the IgAN patients were not different from the levels in the control group, which were unchanged no matter according to different ethnic population, different control group and different cell source. Two studies including 46 persons compared enzymatic activity of β1, 3Gal-T in B cells, and the result showed the β1, 3Gal-T activity was decreased in B cells. Conclusions: We found expression levels of C1GALT1 were remarkably downregulated in IgAN patients and negatively correlated with higher levels of Gd-IgA1. Subsequent meta-analysis validated the low expression and activity of β1, 3Gal-T in B cells in patients with IgAN. However, there was no apparent disparity in the aspect of C1GALT1C1 expression between IgAN and control groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.