Cytochromecoxidase (CcO) couples proton pumping to O2reduction. Its enzymatic activity depends sensitively on pH over a wide range. However, owing to difficulty in crystallizing this protein, X-ray structure analyses of bovine CcO aimed at understanding its reaction mechanism have been conducted using crystals prepared at pH 5.7, which is significantly lower than that in the cell. Here, oxidized CcO at pH 7.3 was crystallized using a fluorinated octyl-maltoside derivative, and the structure was determined at 1.77 Å resolution. No structural differences between crystals obtained at the neutral pH and the acidic pH were detected within the molecules. On the other hand, some differences in intermolecular interactions were detected between the two types of crystal. The influence of pH on the molecular surface is likely to contribute to the pH dependency of the aerobic oxidation of ferrocytochromec.
Serial crystallography is a rapidly growing method that can yield structural insights from microcrystals that were previously considered to be too small to be useful in conventional X-ray crystallography. Here, conditions for growing microcrystals of the photosynthetic reaction centre of Blastochloris viridis within a lipidic cubic phase (LCP) crystallization matrix that employ a seeding protocol utilizing detergent-grown crystals with a different crystal packing are described. LCP microcrystals diffracted to 2.25 Å resolution when exposed to XFEL radiation, which is an improvement of 0.15 Å over previous microcrystal forms. Ubiquinone was incorporated into the LCP crystallization media and the resulting electron density within the mobile QB pocket is comparable to that of other cofactors within the structure. As such, LCP microcrystallization conditions will facilitate time-resolved diffraction studies of electron-transfer reactions to the mobile quinone, potentially allowing the observation of structural changes associated with the two electron-transfer reactions leading to complete reduction of the ubiquinone ligand.
Cytochromecoxidase (CcO), the terminal oxidase in cellular respiration, couples proton pumping to O2reduction. Mammalian CcO resides in the inner mitochondrial membrane. Previously, a model of H-pathway proton pumping was proposed based on various CcO crystal structures. However, all previously determined structures were solved using crystals obtained at pH 5.7, which differs from the environmental pH of CcO in the inner membrane. The structures of fully oxidized and ligand-free reduced CcO at pH 7.3 have now been determined. Structural comparison between the oxidized and reduced states revealed that the structural alterations that occurred upon redox change at pH 5.7 in Asp51, the magnesium-containing cluster, haem groups and helix X, which provide important structural evidence for the H-pathway proton-pumping proposal, also occur at pH 7.3. These structural alterations were restricted to a local region of CcO; no domain movement was detected, nor were significant structural alterations detected in peripheral regions at either pH value. These observations indicate that the small and precise structural alterations that occur over the course of the reaction cycle are not affected by pH change, and that isolated CcO precisely performs proton pumpingviathe H-pathway over a wide pH range. Because the pH is not uniform across the molecular surface of CcO, the fact that the overall structure of CcO is not affected by pH changes ensures the high enzymatic efficiency of this protein in the mitochondria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.