BackgroundThe aim of this study was to investigate the functional abnormalities between the nucleus accumbens (NAc) and the whole brain in individuals with Insomnia Disorder (ID) using resting-state functional magnetic resonance imaging (fMRI). Additionally, the study aimed to explore the underlying neural mechanisms of ID.MethodsWe enrolled 18 participants with ID and 16 normal controls (NC). Resting-state functional connectivity (FC) between the NAc and the whole brain voxels was calculated and compared between the two groups to identify differential brain region. Receiver operating characteristic (ROC) curve analysis was employed to assess the ability of differential features to distinguish between groups. Furthermore, Pearson correlation analysis was performed to examine the relationship between neurocognitive scores and differential features.ResultsThe ID group exhibited significantly reduced FC values in several brain regions, including the right supplementary motor area, the bilateral middle frontal gyrus, the bilateral median cingulate and paracingulate gyri and the left precuneus. The area under the curve (AUC) of the classification model based on FC in these brain regions was 83.3%. Additionally, the abnormal functional changes observed in ID patients were positively correlated with the Fatigue Severity Scale (R = 0.650, p = 0.004).ConclusionThese findings suggest that the NAc may play a crucial role in the diagnosis of ID and could serve as a potential imaging biomarker, providing insights into the underlying neural mechanisms of the disorder.
IntroductionOne of the most perplexing and characteristic symptoms of the schizophrenia (SZ) patients is hallucination. The occurrence of hallucinations to be associated with altered activity in the auditory and visual cortex but is not well understood from the brain functional network dynamics in SZ.ObjectivesTo explore the brain abnormal basis of hallucinations in SZ with the dynamic functional connectivity (dFC).MethodsUsing magnetic resonance imaging for 83 SZ patients and 83 matched healthy controls and independent component analysis, 52 independent components (ICs) were identified as nodes and assigned into eight intrinsic connectivity networks (Figure 1A). Subsequently, we established dFC matrices and clustered them into four discrete states (Figure 1B) and three state transition metrics were obtained. To further explore the changes in the centrality of each component, eigenvector centrality (EC) was calculated and its time-varying was evaluated.ResultsCompared to controls with FDR correction, we found that patients had more mean dwell times and fractional time in state 1 (P=0.0081 and P=0.0018), mainly with hypoconnectivity between auditory and visual network and other networks and hyperconnectivity between language and default-mode network (DMN). While, patients had less dwell times and fractional time in state 3 (P=0.0018 and P=0.0009), and decreased FC between visual network and executive control network (ECN) and increased FC between ECN and DMN than controls (Figure 2).EC statistics showed that SZs displayed increased temporal dynamics in visual-related regions (Figure 3).ConclusionsSZ was mainly manifested as altered dFC and temporal variability of nodal centrality in auditory and visual networks.DisclosureNo significant relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.