Bound-residue formation is a major dissipation process of most organic xenobiotics in soil. However, both the formation and nature of bound residues of tetrabromobisphenol A (TBBPA) in soil are unclear. Using a 14C-tracer, we studied the fate of TBBPA in an oxic soil during 143 days of incubation. TBBPA dissipated with a half-life of 14.7 days; at the end of incubation, 19.6% mineralized and 66.5% formed bound residues. Eight extractable metabolites were detected, including TBBPA methyl ethers, single-ring bromophenols, and their methyl ethers. Bound residues (mostly bound to humin) rapidly formed during the first 35 days. The amount of those humin-bound residues then quickly decreased, whereas total bound residues decreased slowly. By contrast, residues bound to humic acids and fulvic acids increased continuously until a plateau was reached. Ester- and ether-linked residues accounted for 9.6-27.0% of total bound residues during the incubation, with ester linkages being predominant. Residues bound via ester linkages consisted of TBBPA, TBBPA monomethyl ether, and an unknown polar compound. Our results indicated that bound-residue formation is the major pathway of TBBPA dissipation in oxic soil and provide first insights into the chemical structure of the reversibly ester-linked bound residues of TBBPA and its metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.