The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials.particle adhesion and removal | water-repellant insect wings | nanostructured interfaces | capillary forces B oth natural and synthetic superhydrophobic surfaces are believed to achieve self-cleaning by the so-called "lotus effect" (1, 2). The lotus effect typically refers to the removal of the contaminating particles by impacting and/or rolling water droplets (1, 3). The superhydrophobicity is important because of the associated large contact angle and small hysteresis (4), which promotes the rolling motion carrying away contaminants. According to the conventional wisdom of the lotus effect, the self-cleaning function will cease without incoming droplets or favorable external forces, posing severe restrictions for practical applications of superhydrophobic materials.Here, we demonstrate an autonomous mechanism to achieve self-cleaning on superhydrophobic surfaces, where the contaminants are removed by self-propelled jumping condensate powered by surface energy. When exposed to condensing water vapor, the contaminating particles are either fully enclosed or partially covered with the resulting liquid condensate. Building upon our previous publications showing self-propelled jumping upon drop coalescence (5, 6), we show particle removal by the merged condensate drop with a size comparable to or larger than that of the contaminating particle(s). Further, we report a distinct jumping mechanism upon particle aggregation, without a condensate drop of comparable size to that of the particles, where a group of particles exposed to water condensate clusters together by capillarity and self-propels away from the superhydrophobic surface.The jumping-condensate mechanism reported here offers a unique route toward self-cleaning, with potential applications ranging from microelectronic wafer cleaning to heat exchanger maintenance (7). Particle removal is often accomplished in a gas flow or a liquid stream by hydrodynamic shear stresses, which are parallel to the surface. The parallel hydrodynamic forces are not ideal in competing against the adhesive mech...
Coalescing drops spontaneously jump out of plane on a variety of biological and synthetic superhydrophobic surfaces, with potential applications ranging from self-cleaning materials to self-sustained condensers. To investigate the mechanism of self-propelled jumping, we report three-dimensional phase-field simulations of two identical spherical drops coalescing on a flat surface with a contact angle of 180 • . The numerical simulations capture the spontaneous jumping process, which follows the capillary-inertial scaling. The out-of-plane directionality is shown to result from the counter-action of the substrate to the impingement of the liquid bridge between the coalescing drops. A viscous cutoff to the capillary-inertial velocity scaling is identified when the Ohnesorge number of the initial drops is around 0.1, but the corresponding viscous cutoff radius is too small to be tested experimentally. Compared to experiments on both superhydrophobic and Leidenfrost surfaces, our simulations accurately predict the nearly constant jumping velocity of around 0.2 when scaled by the capillary-inertial velocity. By comparing the simulated drop coalescence processes with and without the substrate, we attribute this low non-dimensional velocity to the substrate intercepting only a small fraction of the expanding liquid bridge.
Self-propelled jumping upon drop coalescence has been observed on a variety of textured superhydrophobic surfaces, where the jumping motion follows the capillary–inertial velocity scaling as long as the drop radius is above a threshold. In this paper, we report an experimental study of the self-propelled jumping on a Leidenfrost surface, where the heated substrate gives rise to a vapour layer on which liquid drops float. For the coalescence of identical water drops, we have tested initial drop radii ranging from 20 to $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}500\ \mu \mathrm{m}$, where the lower bound is related to the spontaneous takeoff of individual drops and the upper bound to gravitational effects. Regardless of the approaching velocity prior to coalescence, the measured jumping velocity is around 0.2 when scaled by the capillary–inertial velocity. This constant non-dimensional velocity holds for the experimentally accessible range of drop radii, and we have found no cutoff radius for the scaling, in contrast to prior experiments on textured superhydrophobic surfaces. The Leidenfrost experiments quantitatively agree with our numerical simulations of drop coalescence on a flat surface with a contact angle of 180°, suggesting that the cutoff is likely to be due to drop–surface interactions unique to the textured superhydrophobic surfaces.
Fiber-based coalescers are widely used to accumulate droplets from aerosols and emulsions, where the accumulated droplets are typically removed by gravity or shear. This Letter reports self-propelled removal of drops from a hydrophobic fiber, where the surface energy released upon drop coalescence overcomes the drop-fiber adhesion, producing spontaneous departure that would not occur on a flat substrate of the same contact angle. The self-removal takes place above a threshold drop-to-fiber radius ratio, and the departure speed is close to the capillary-inertial velocity at large radius ratios.
Dropwise condensation can be enhanced by superhydrophobic surfaces on which the condensate drops spontaneously jump upon coalescence. However, the self-propelled jumping in prior reports is mostly perpendicular to the substrate. Here, we propose a substrate design with regularly spaced micropillars. Coalescence on the sidewalls of the micropillars leads to self-propelled jumping in a direction nearly orthogonal to the pillars and therefore parallel to the substrate. This in-plane motion in turn produces sweeping removal of multiple neighboring drops. The spontaneous sweeping mechanism may greatly enhance dropwise condensation in a self-sustained manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.