Neutrophils release neutrophil extracellular traps (NETs) in a pathogen-killing process called NETosis. Excessive NETs formation, however, is implicated in disease pathogenesis. Therefore, to understand how NETosis is regulated, we examined the effect of dexamethasone (DXM), an anti-inflammatory drug, on this process and the role of toll-like receptors (TLRs). We stimulated human neutrophils with phorbol 12-myristate 13-acetate (PMA) or Staphylococcus aureus (S. aureus) and quantified NETs formation. We also examined the effect of DXM on the bactericidal effect of NETs and the role of reactive oxygen species (ROS) and nuclear factor (NF)-κB in DXM-regulated NETosis. DXM significantly inhibited S. aureus-induced NETosis and extracellular bacterial killing. ROS production and NF-κB activation were not involved in DXM-regulated NETosis. TLR2 and TLR4, but not TLR5 or TLR6, modified S. aureus-induced NETs formation. Neither DXM nor TLRs were involved in PMA-induced NETosis. Furthermore, TLR2 and TLR4 agonists rescued DXM-inhibited NETosis, and neither TLR2 nor TLR4 antagonists could further inhibit NETosis reduction induced by DXM, indicating that DXM may inhibit NETosis by regulating TLR2 and TLR4. In conclusion, the mechanisms of S. aureus- and PMA-induced NETosis are different. DXM decreases NETs formation independently of oxidant production and NF-κB phosphorylation and possibly via a TLR-dependent mechanism.
Here, we propose the use of carboxyl-functionalized ionic liquid, [Hbet][Tf 2 N], to separate the fission products from spent nuclear fuels. This innovative method allows the selective dissolution of neutron poisons, lanthanides oxide, as well as some fission products with high yield, leaving most of the UO 2 matrix and minor actinides behind in the spent nuclear fuel and accomplishing the actinides recovery as a group. Water-saturated [Hbet][Tf 2 N] can dissolve lanthanides oxide from simulated spent nuclear fuel with a dissolution ratio of 100% at 40 °C. However, the dissolution of uranium is almost negligible (<1%) under the same conditions. This big difference in dissolution provides a novel separation approach to spent nuclear fuel recycling and may open new perspectives for spent nuclear fuel reprocessing. The recovery of Nd and U from metal-loaded ionic liquids and the recyclability of the ionic liquid [Hbet][Tf 2 N] have also been investigated. Furthermore, a U/x value related to the lattice energy U of metal compound M x O y is used to elaborate the solubility. This work represents the first case for efficient fission products removal by selective dissolution, avoiding the complete dissolution of spent nuclear fuel, the producing of the large high-level radioactive waste, and reducing environmental hazards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.