Among multiple engineered nanoparticles that have been used in the bactericidal application, silver nanoparticles (Ag NPs) are the most explored bactericidal functional materials with their high efficiency and broad-spectrum bactericidal properties. However, environmental toxicology and lack of modifiability restrict their further development. In this study, a simple and economic method was established to fabricate lignin and silver hybrid nanoparticles (Lig-Ag NPs) with bactericidal ability. Afterwards, material characterization, bactericidal evaluation, and mechanism exploration were implemented to explore the properties of Lig-Ag NPs. The results indicated that Lig-Ag NPs not only demonstrated remarkable dispersity, uniformity, and encapsulation efficiency but also possessed approximated bactericidal ability on
Escherichia coli
and better durability compared with the same concentration of Ag NPs on
E. coli
. On the other hand, flow cytometry and transcriptomic analysis were used to further explore the bactericidal mechanism of Lig-Ag NPs. The results showed that oxidative stress was the possible leading bactericidal mechanism of Lig-Ag NPs. The formation approaches of reactive oxygen species production were various including the slow release of silver ion and generation of quinone/semi-quinone radicals on account of the combined effect of lignin and silver.
Graphical abstract
Lig-Ag NPs exhibited remarkable
dispersity, uniformity, encapsulation efficiency, and possessed approximated
bactericidal ability and better durability compared with Ag NPs.
Supplementary information
The online version contains supplementary material available at 10.1007/s42114-022-00460-z.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.