Using in situ generated H 2 O 2 is potentially an effective approach for benzyl alcohol selective oxidation. While the microporous titanium silicate (TS-1) supported with Pd is promising for selective oxidation, the Pd particles are preferentially anchored on the external surface, which leads to the problems such as non-uniform dispersion and low thermal stability. Here, we prepared a Pd@HTS-1 catalyst in which the Pd subnanoparticles were encapsulated in the channels of the hierarchical TS-1 (HTS-1), for benzyl alcohol selective oxidation with in situ produced H 2 O 2 . We find that the oxidation rate of benzyl alcohol by in situ H 2 O 2 over the Pd@HTS-1 is up to 4268.8 mmol h –1 kg cat –1 , and the selectivity of benzaldehyde approaches 100%. In contrast to the conventional Pd/HTS-1, the present Pd@HTS-1 benefits the benzyl alcohol selective oxidation due to the increased dispersion of Pd particles (forming uniformly dispersed subnano-sized particles), as well as the confinement effect and hierarchical porosity of the HTS-1 host. We further suggested that hydrogen peroxide produced in situ from the molecular hydrogen and oxygen over the Pd sites can be spilled over to the framework Ti 4+ sites, forming the Ti-OOH active species, which selectively oxidizes the chemisorbed benzyl alcohol to benzaldehyde on the Pd sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.