Convolutional neural network (CNN) is recognized as state of the art of deep learning algorithm, which has a good ability on the image classification and recognition. The problems of CNN are as follows: the precision, accuracy and efficiency of CNN are expected to be improved to satisfy the requirements of high performance. The main work is as follows: Firstly, wavelet convolutional neural network (wCNN) is proposed, where wavelet transform function is added to the convolutional layers of CNN. Secondly, wavelet convolutional wavelet neural network (wCwNN) is proposed, where fully connected neural network (FCNN) of wCNN and CNN are replaced by wavelet neural network (wNN). Thirdly, image classification experiments using CNN, wCNN and wCwNN algorithms, and comparison analysis are implemented with MNIST dataset. The effect of the improved methods are as follows: (1) Both precision and accuracy are improved. (2) The mean square error and the rate of error are reduced. (3) The complexitie of the improved algorithms is increased.
Autotuning and online tuning of control parameters in control processes (OTP) are widely used in practice, such as in chemical production and industrial control processes. Better performance (such as dynamic speed and steady-state error) and less repeated manual-tuning workloads in bad environments for engineers are expected. The main works are as follows: Firstly, a change ratio for expert system and fuzzy-reasoning-based OTP methods is proposed. Secondly, a wavelet neural-network-based OTP method is proposed. Thirdly, comparative simulations are implemented in order to verify the performance. Finally, the stability of the proposed methods is analyzed based on the theory of stability. Results and effects are as follows: Firstly, the proposed control parameters of online tuning methods of artificial-intelligence-based classical control (AI-CC) systems had better performance, such as faster speed and smaller error. Secondly, stability was verified theoretically, so the proposed method could be applied with a guarantee. Thirdly, a lot of repeated and unsafe manual-based tuning work for engineers can be replaced by AI-CC systems. Finally, an upgrade solution AI-CC, with low cost, is provided for a large number of existing classical control systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.