We consider the problem of 2D motion retargeting, which is to transfer the motion of one 2D skeleton to another skeleton of a different body shape. Existing methods decompose the input motion skeleton into dynamic (motion) and static (body shape, viewpoint angle, and emotion) features and synthesize a new skeleton by mixing up the features extracted from the different data. However, the resulting motion skeletons do not reflect subject-dependent factors that can stylize motion, such as skill and expressions, leading to unattractive results. In this work, we propose a novel network to separate subject-dependent and -independent motion features and to reconstruct a new skeleton with or without subject-dependent motion features. The core of our approach is adversarial feature disentanglement. The motion features and a subject classifier are trained simultaneously such that subject-dependent motion features do allow for between-subject discrimination, whereas subject-independent features cannot. The presence or absence of individuality is readily controlled by a simple summation of the motion features. Our method shows superior performance to the state-of-the-art method in terms of reconstruction error and can generate new skeletons while maintaining individuality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.