Abstract:Recently, researchers around the world have been striving to develop and modernize human-computer interaction systems by exploiting advances in modern communication systems. The priority in this field involves exploiting radio signals so human-computer interaction will require neither special devices nor vision-based technology. In this context, hand gesture recognition is one of the most important issues in human-computer interfaces. In this paper, we present a novel device-free WiFi-based gesture recognition system (WiGeR) by leveraging the fluctuations in the channel state information (CSI) of WiFi signals caused by hand motions. We extract CSI from any common WiFi router and then filter out the noise to obtain the CSI fluctuation trends generated by hand motions. We design a novel and agile segmentation and windowing algorithm based on wavelet analysis and short-time energy to reveal the specific pattern associated with each hand gesture and detect duration of the hand motion. Furthermore, we design a fast dynamic time warping algorithm to classify our system's proposed hand gestures. We implement and test our system through experiments involving various scenarios. The results show that WiGeR can classify gestures with high accuracy, even in scenarios where the signal passes through multiple walls.
Cloud Data Centers (CDCs) have become a vital computing infrastructure for enterprises. However, CDCs consume substantial energy due to the increased demand for computing power, especially for the Internet of Things (IoT) applications. Although a great deal of research in green resource allocation algorithms have been proposed to reduce the energy consumption of the CDCs, existing approaches mostly focus on minimizing the number of active Physical Machines (PMs) and rarely address the issue of load fluctuation and energy efficiency of the Virtual Machine (VM) provisions jointly. Moreover, existing approaches lack mechanisms to consider and redirect the incoming traffics to appropriate resources to optimize the Quality of Services (QoSs) provided by the CDCs. We propose a novel adaptive energy-aware VM allocation and deployment mechanism called AFED-EF for IoT applications to handle these problems. The proposed algorithm can efficiently handle the fluctuation of load and has good performance during the VM allocation and placement. We carried out extensive experimental analysis using a real-world workload based on more than a thousand PlanetLab VMs. The experimental results illustrate that AFED-EF outperforms other energy-aware algorithms in energy consumption, Service Level Agreements (SLA) violation, and energy efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.