Radiotherapy (RT) is a standard treatment strategy for many cancer types, but the need to frequently apply high doses of ionizing radiation in order to achieve therapeutic efficacy can cause severe harm to healthy tissues, leading to adverse patient outcomes. In an effort to minimize these toxic side effects, we herein sought to design a novel approach to the low-dose RT treatment of hypoxic tumors using a Tirapazamine (TPZ)-loaded exosome (EXO) nanoplatform (MT). This MT platform was synthesized via loading EXOs with TPZ, which is a prodrug that is activated when exposed to hypoxic conditions. MT application was able to achieve effective tumor inhibition at a relatively low RT dose (2 Gy) that was superior to standard high-dose (6 Gy) RT treatment with specific targeting to the hypoxic region of tumor. RT-mediated oxygen consumption further aggravated hypoxic conditions to improve TPZ activation and treatment efficacy. Together, our findings demonstrate the clinical promise of this MT platform as a novel tool for the efficient radiosensitization and treatment of cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.