This paper reports an improved traditional fiber degumming method, where sisal fibers were treated by alkali oxygen and pectinase, respectively, after the solute alkali pretreatment. To explore the influence of various factors on its degumming, efficiency of degumming through single factor and orthogonal experiments was aasessed. The results showed that pectinase/alkali-oxygen method after the first alkali treatment had a good effect on the degumming of sisal fiber, and most of the noncellulose components such as hemicellulose, lignin and pectin had been removed. After pectinase treatment, the cellulose content and crystallinity were 71.87% and 66.29%, respectively. After alkaline oxygen treatment, the cellulose content was 77.16%, and the crystallinity was 69.09%. In terms of degumming rate, alkali oxygen treatment worked better than pectinase treatment, the degumming rate of pectinase method was about 10%, while that of alkali-oxygen method was more than 20%. In other hand, the pectinase method was much milder and had less damage to fibers. It would provide some references for the future application and development of sisal fiber.
Cellulose nanowhiskers as one kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Herein, the sisal cellulose nanowhiskers with length of 100–500 nm, ultrathin diameter of 6–61 nm, high crystallinity of 74.74 % and C6 carboxylate groups converted from C6 primary hydroxyls were prepared via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization. The effects of sodium hydroxide concentration in alkali pretreatment on the final sisal cellulose nanowhiskers were explored. It was found that with the increase of sodium hydroxide concentration, the sisal fiber crystalline type would change from cellulose I to cellulose II. The versatile sisal cellulose nanowhiskers would be particularly useful for applications in the nanocomposites as reinforcing phase, as well as in tissue engineering, filtration, pharmaceutical and optical industries as additives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.