With the booming development of Internet-of-Things (IoT) and communication technologies such as 5G, our future world is envisioned as an interconnected entity where billions of devices will provide uninterrupted service to our daily lives and the industry. Meanwhile, these devices will generate massive amounts of valuable data at the network edge, calling for not only instant data processing but also intelligent data analysis in order to fully unleash the potential of the edge big data. Both the traditional cloud computing and on-device computing cannot sufficiently address this problem due to the high latency and the limited computation capacity, respectively. Fortunately, the emerging edge computing sheds a light on the issue by pushing the data processing from the remote network core to the local network edge, remarkably reducing the latency and improving the efficiency. Besides, the recent breakthroughs in deep learning have greatly facilitated the data processing capacity, enabling a thrilling development of novel applications, such as video surveillance and autonomous driving. The convergence of edge computing and deep learning is believed to bring new possibilities to both interdisciplinary researches and industrial applications. In this article, we provide a comprehensive survey of the latest efforts on the deep-learning-enabled edge computing applications and particularly offer insights on how to leverage the deep learning advances to facilitate edge applications from four domains, i.e., smart multimedia, smart transportation, smart city, and smart industry. We also highlight the key research challenges and promising research directions therein. We believe this survey will inspire more researches and contributions in this promising field. INDEX TERMS Internet of Things, edge computing, deep learning, intelligent edge applications.
The Internet of Things (IoT) is widely regarded as a key component of the Internet of the future and thereby has drawn significant interests in recent years. IoT consists of billions of intelligent and communicating ''things'', which further extend borders of the world with physical and virtual entities. Such ubiquitous smart things produce massive data every day, posing urgent demands on quick data analysis on various smart mobile devices. Fortunately, the recent breakthroughs in deep learning have enabled us to address the problem in an elegant way. Deep models can be exported to process massive sensor data and learn underlying features quickly and efficiently for various IoT applications on smart devices. In this article, we survey the literature on leveraging deep learning to various IoT applications. We aim to give insights on how deep learning tools can be applied from diverse perspectives to empower IoT applications in four representative domains, including smart healthcare, smart home, smart transportation, and smart industry. A main thrust is to seamlessly merge the two disciplines of deep learning and IoT, resulting in a wide-range of new designs in IoT applications, such as health monitoring, disease analysis, indoor localization, intelligent control, home robotics, traffic prediction, traffic monitoring, autonomous driving, and manufacture inspection. We also discuss a set of issues, challenges, and future research directions that leverage deep learning to empower IoT applications, which may motivate and inspire further developments in this promising field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.