The aging characteristic of Cu-0.6Cr-0.15Zr-0.05Mg-0.02Si alloy containing trace rare earth yttrium was investigated. The results showed that Cu-0.6Cr-0.15Zr-0.05Mg-0.02Si alloy obtained good comprehensive performance after 80% rolling and then aging at 480°C for 1 h; the hardness and electrical conductivity reached HV 150 and 85.5% IACS, respectively. Increasing aging temperature accelerated aging precipitation. The time for attaining peak hardness was postponed, the precipitates were finer (2-4 nm), and the interparticle spacing was shorter due to yttrium addition. The hardness and electrical conductivity of the Y-containing alloy after 80% deformation and then aging at 480°C for 45 min reached HV 174 and 82.1% IACS, respectively.
To obtain high strength and high electrical conductivity at the same time, the microstructure and properties of 0.2 wt.% V-added, 0.1 wt.% V-added and V-free Cu-1.6Ni-1.2Co-0.65Si(-V) alloys were investigated. We examined with electrical conductivity and hardness measurements, tensile test, optical microscope and transmission electron microscope (TEM). The results show that Cu-1.6Ni-1.2Co-0.65Si-0.1V alloy obtains excellent combination properties: electrical conductivity is 46.12% IACS, hardness is 293.88 Hv, and tensile strength is 782 MPa, which are produced by 65% cold rolling + aging at 500 °C for 480 min. The addition of vanadium (V) can accelerate the precipitation of solute atoms from the copper matrix, improve the hardness and electrical conductivity of Cu-1.6Ni-1.2Co-0.65Si alloys, and greatly accelerated the aging response. δ-(Co,Ni)2Si and β-Ni3Si phases are detected in Cu-1.6Ni-1.2Co-0.65Si-0.1V alloy. The Orowan mechanism and grain boundary strengthening play a major role in the yield strength strengthening due to δ-(Co,Ni)2Si phase.
Cu-Ni-Si alloys are widely used in electrical and electronic industry owing to excellent electrical conductivity and strength. A suitable addition of Co in the Cu-Ni-Si alloys can improve its strength and deteriorate its electrical conductivity. In this work, Cu-Ni-Co-Si-P-Mg alloys with different Co content are employed to investigate the effects of Co on the properties and microstructure. The results showed that Co addition lead to the formation of (Ni, Co)2Si precipitates. (Ni, Co)2Si precipitate is harder to coarsen than δ-Ni2Si during aging. The larger the Co content in the alloys is, the smaller the precipitates formed is. There exists a threshold content of Co to divide the studied alloys into two groups. One group of theses alloys with <1 wt.% Co or Co/Ni ratio <0.56 has the same aging behavior as the Cu-Ni-Si-P-Mg alloy. On the contrary, the time to reach the peak hardness of aging for another group can be obviously delayed and its electrical conductivity decreases slightly with the increase of Co content. It can be attributed to the lower diffusion rate of Co than that of Ni in the Cu matrix. Meanwhile, the Co addition can inhibit the formation of P-enriched Ni-P phase in Co-containing alloys during aging. The as-quenched Cu-1.6Ni-1.2Co-0.65Si-0.1P-0.05Mg alloy can reach 257 HV and 38.7%IACS after aging at 500 °C for 3 h, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.