It is assumed that nitric oxide synthase and nitric oxide are involved in the regulation of female reproduction. This study aimed to assess the roles of nitric oxide synthase (NOS) in follicular development. The endothelial NOS (eNOS) inhibitor L-NAME, inducible NOS (iNOS) inhibitor S-Methylisothiourea (SMT) and NOS substrate L-arginine (L-Arg) were used in the NOS inhibition models in vivo. Neonatal female rats were treated with phosphate buffer saline (PBS, control), L-NAME (L-NG-Nitroarginine Methyl Ester, 40 mg/kg), SMT (S-Methylisothiourea, 10 mg/kg), L-NAME + SMT, or L-Arg (L-arginine, 50 mg/kg) via subcutaneous (SC) injection on a daily basis for 19 consecutive days, with the samples being collected on specific postnatal days (PD5, PD10, and PD19). The results indicated that the number of antral follicles, the activity of total-NOS, iNOS, neuronal NOS (nNOS), and eNOS, and the content of NO in the ovary were significantly (p < 0.05) increased in the L-Arg group at PD19, while those in L + S group were significantly (p < 0.05) decreased. Meanwhile, the ovarian expression in the L-Arg group in terms of p-AKT, p-FoxO3a, and LC3-II on PD19 were significantly (p < 0.05) upregulated, while the expressions of PTEN and cleaved Caspase-3 were (p < 0.05) downregulated as a result of NOS/NO generation, respectively. Therefore, the results suggest that NOS is possibly involved in the maturation of follicular development to puberty via the PI3K/AKT/FoxO3a pathway, through follicular autophagia and apoptosis mechanisms.
Simple SummaryThe search for effective medicines is challenging. Resveratrol is a phytoalexin, and its function remains unelucidated. Therefore, we undertook the present study to investigate reproductive disturbances due to restraint stress in mice and whether resveratrol plays an anti-stress role. Our results confirmed that resveratrol plays a potential role in the reduction of stress in mice. AbstractWe evaluated immobilization stress and resveratrol supplementation in immature male mice at 30 days of age for 15 consecutive days. Fifty Swiss mice were divided into five groups (10 mice each): Controls, restraint stress (RS), restraint stress + vehicle (RS + V), RS + 2 mg/kg, and RS + 20 mg/kg. We determined results on the basis of hematoxylin and eosin (H&E), “Periodic acid-Schiff” staining, and TUNEL assay. The results indicated that immobilization stress significantly decreased body weight, testis weight, and water/food intake compared to the control; while resveratrol ameliorated these effects. The quantitative histologic evaluation of the seminiferous tubule diameter, luminal diameter, area of seminiferous tubules, area of tubule lumen, epithelial height, Leydig cell number, and the width of the tunica albuginea were similarly decreased after exposure to RS. These parameters recovered back to normal in the RS + 2 mg/kg group. The development of spermatogenesis was significantly delayed in the RS, RS + V, and RS + 20 mg groups based upon our evaluation score system. However, we observed no significant differences in the RS + 2 mg group compared with the control group. The number of TUNEL-positive cells also significantly decreased in the RS + 2 mg/kg group. In conclusion, we found that the administration of 2 mg/kg was an effective dose against immobilization stress in mice.
Simple SummaryDenatonium benzoate is a strong bitter taste receptor agonist, extensively used for its activation of different cell pathways. Taste signals have been associated to food recognition and avoidance, and bitter taste provokes an aversive reaction and is assumed to protect chickens from consuming poisons and harmful toxic substances. The results of the study revealed that dietary supplementation with medium and high doses of denatonium benzoate damaged the epithelial cells of the heart and kidneys by inducing apoptosis and autophagy and reduced the growth of chickens, respectively. However, mRNA expressions of bitter taste receptors, downstream signaling effector genes, apoptosis-, autophagy- and antioxidant-related genes were higher on day 7, while these expressions were subsequently decreased on day-28 in the heart and kidney of Chinese Fast Yellow chickens in a dose-response manner.AbstractThe sense of taste which tells us which prospective foods are nutritious, poisonous and harmful is essential for the life of the organisms. Denatonium benzoate (DB) is a bitter taste agonist known for its activation of bitter taste receptors in different cells. The aim of the current study was to investigate the mRNA expressions of bitter taste, downstream signaling effectors, apoptosis-, autophagy- and antioxidant-related genes and effector signaling pathways in the heart/kidney of chickens after DB dietary exposure. We randomly assigned 240, 1-day-old Chinese Fast Yellow chicks into four groups with five replicates of 12 chicks and studied them for 28 consecutive days. The dietary treatments consisted of basal diet and feed containing DB (5, 20 and 100 mg/kg). The results revealed that dietary DB impaired (p < 0.05) the growth performance of the chickens. Haemotoxylin and eosin staining and TUNEL assays confirmed that medium and high doses of DB damaged the epithelial cells of heart/kidney and induced apoptosis and autophagy. Remarkably, the results of RT-PCR and qRT-PCR indicated that different doses of DB gradually increased (p < 0.05) mRNA expressions of bitter taste, signaling effectors, apoptosis-, autophagy- and antioxidant- related genes on day 7 in a dose-response manner, while, these expressions were decreased (p < 0.05) subsequently by day-28 but exceptional higher (P < 0.05) expressions were observed in the high-dose DB groups of chickens. In conclusion, DB exerts adverse effects on the heart/kidney of chickens in a dose-response manner via damaging the epithelium of the heart/kidney by inducing apoptosis, autophagy associated with bitter taste and effector gene expressions. Correlation analyses for apoptosis/autophagy showed agonistic relationships. Our data provide a novel perspective for understanding the interaction of bitter taste, apoptosis, autophagy and antioxidative genes with bitter taste strong activators in the heart/kidney of chicken. These insights might help the feed industries and pave the way toward innovative directions in chicken husbandry.
Breeder hens in the late egg-laying period have lower reproductive performance, manifesting as degraded egg-laying rate, quality and hatching performance. The production performance of laying hens is influenced by breeder hens (Gong et al., 2019; Lang et al., 2019). The Qiling hen, used in the present study, is a Chinese native chicken. It is worth mentioning that, the reproductive performance of these local hens decreases rapidly in the late egg-laying period. Therefore, it is of great significance to find a solution to this problem from the perspective of nutritional regulation. In poultry, many factors are in connection with fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.